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Abstract:

In this paper the study of Frequency Modulation Harmonic Mode-locking for Ytterbium
Doped Fiber Laser is presented. The model studied, uses ytterbium-doped, single mode fiber
pumped by 976 nm laser source is used with 150 mW pumping power to produce 1055 nm output
laser and Frequency Modulation Harmonically Mode-Locked by MZI optical modulator. The
effect of both normal and anomalous dispersion regimes on output pulses is investigated. Also,
modulation frequency effect on pulse parameters is investigated by driving the modulator into
different frequencies values.
This study shows the stability of working in anomalous dispersion regime and the pulse
compression effect is better than counterpart normal regime, due to the combination effect
of both negative(Group velocity dispersion), GVD and nonlinearity. Also it shows the great effect
of modulation frequency on pulse parameters and stability of the system. Model-locking fiber
laser master equation is introduced, and using the assumed pulse shapes for both dispersion
regimes after modifying (Ginzburg-Landau equation), GLE and by applying the moment method,
a set of five ordinary differential equations are introduced describing pulse parameters evolution
during each roundtrip.To solve these equations numerically using fourth- fifth order, Runge-Kutta
method is performed through MatLab 7.0 program.

4y yadl Gl 5l 33l (el
aldaall Lalaiy g3

:a..u:lﬂi.i'n
eainy iall 5 el Calll 5l gan il el aelinall Jlail) Ji8 A po 3 e 3

EAO76mm) 33 ymns mal) (53T Iaailh il g 5 s Cpanl g aall 5 gl g5l
e planiuly Jaaill Ji) aeliie 03 8 (panai (1 055mW)s 033 @ 0> c(150m W )geia 58
Lagll & 38l 5 galse ) cadil) pils il S (5 s (ensS(Mach-Zender Interferometer)Jals
lay il e Adlide ) acaalllind Eua Aianll Ll ge 30 il (el S pais JGLeS As Al

e Glgia Junmblianll i il g( oot e )3al caiill gan A deall &y ) sl ) jall o jelil
Opanaill €l il A jall o el GllAS Aphaa S5 AL GYD & il i) Cany g e galiie Y1 il
plaaiuly g daaill Jiia Colll 5l A I Alslaalt cdanlaily Ao ghasall 4y ) sl 5 dagll Jal go S gas 51
il o (Ginzburg-Landau equation)dstas Juass sy il e g IS dpal Y1 JSEYI
LaSedaliie YIAS, )
¥l 03 Ja Jal e 50 IS IS sl el se Ja ciead Aplalis caYalae dused (e de gana cdil
MatLab 7.0 g5 I3 e ( Runge-Kutta)d e alldal N4 yall 44 ya aladind 23 "base




Averaged Second Order Dispersion fs*/m

Averaged Third Order Dispersion fs* /m
Average Non Linearity (mW)™'
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A Modulation Depth

Ay Gain Medium Spectral Full Width at Half-Maximum rad/fs

' Temporal Shift ps

nm Micro-Meter

3 Pulse Width ps

(0} Phase Shift rad

Q Frequency Shift GHz

o, Modulation Frequency = 2 nt(F, )

1. INTRODUCTION: This is frequently the case in fiber lasers

Mode-locked lasers are routinely used for
a wide variety of applications since they can
provide optical pulses ranging in widths from
a few femtoseconds to hundreds of
picoseconds. As early as 1970, an analytic
theory was developed for determining pulse
parameters and shape in actively mode-
locked solid-state lasers by considering the
effects of the mode-locker and gain filtering
and then imposing a self-consistency
criterion in the time domain. In many cases,
it is possible to include the effect of
chromatic dispersion on the pulse shape as
well; however, once the nonlinear effects
within the cavity become important, analytic
investigations begin to falter.

where both fiber dispersion and nonlinearity
are important. It is necessary to consider the
theory of electromagnetic wave propagation
in dispersive, nonlinear media. [1, 2]. Pulse
propagation in optical fibers is governed by
the Nonlinear Schrédinger Equation (NLSE),
which must generally be solved numerically
since it has no analytic solution. [3, 4]. In the
anomalous-dispersion regime, this equation
allows for the fundamental-soliton solution
that represents an optical pulse whose shape
and width are invariant under propagation. In
the context of fiber lasers, the NLSE must be
modified to account for loss, gain, gain
filtering, and a mode-locking element.
Although the resulting equation has no



closed form solution, passive mode-locking
mechanisms, such as nonlinear polarization
rotation, nonlinear fiber-loop mirror, and
saturable absorption, produce “soliton-like”
pulses.

The purpose is to obtain the basic
equation that satisfies propagation of optical
pulses in single-mode fibers. Then the
equations that concern the evolution of pulse
parameters during each roundtrip will be
introduced.

These equations will be solved numerically
using fourth-fifth order Runge-Kutta.

2. MODE-LOCKING FIBER LASER
MASTER EQUATION:

A general “master” equation used to
model mode-locking fiber laser system is
introduced.

This equation, is in fact a Generalized Non-
Linear Schrodinger Equation (GNLSE) or
(Ginzburg-Landau equation) [5, 6] which,
generally describes all types of mode-locking
fiber lasers by just changing the term M (A,
t) that represents the mode-locker technique.
The mode-Lock master equation is: [1, 7, 8]
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Where, the saturation gain g, could be

approximated as in following relation:

[7, 6, 8]

F =P (LR P TP Y v (2)
Where, P represents the saturation power
of the gain medium, g the average small-
signal gain, and, P, , the average power over

one pulse slot of duration T, , which be

calculated as in the following equation:
(9, 10]
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The term A (t, z), represents the slowly
varying envelope of the electric field and the
pulse slot is calculated by following
equation:

T, =1/F =Tg /N.ovoioioricrrirernnn. (4)

Where F, is the frequency at which the laser
is mode-locked, which is often denoted

F,, as modulation frequency. N is an integer
(N = 1) representing the harmonic at which
the laser will mode locked. Ty, is the
roundtrip.

The gain medium’s finite bandwidth is
assumed to have a parabolic filtering effect
with a spectral full width at half-maximum
(FWHM) which is given by following
relation: [5]
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Where:
T, : The spectral width of the finite gain
bandwidth.
The term igT; , results from the gain. T he
physical origin of this contribution is related

to the finite gain band width of the doping
fiber and is referred to as gain dispersion
(ZT; ) since it originates from the frequency
dependence of the gain. [5]
The term (A) is the slowly varying envelope
of the electric field in term of T, the
propagation time, which is given by the
following relation:
(O 74 N —— (6)
Where:
z : the propagation distance in z direction,
v, :the group velocity.

In the master equation, Eq. (1), there
are two time scales which represent:

1. The time (t), measured in the frame of the
moving pulse.



2. The propagation time (T).

Since an average over a single
roundtrip is considered, (T) is measured in
terms of the roundtrip time:

Ty =LV =0 ML nnrns (7)

Where:

L : The cavity length

n : Refractive Index

The pulse time scale is assumed to be
sufficiently smaller than T, and hence, the

two times are essentially decoupled. [11]
This treatment is valid for most mode-locked
lasers for which Ty exceeds 1 ns and pulse
widths are typically less than ps.

The effect of FM mode-locker on the
field is sinusoidal and as in the following
expression: {12, 7]

M (A, 1)= iAg cos o, (t+t,.) A...(8)
Where:
Ay Modulation depth,

t : The delay between the center of the

m
modulation cycle and the temporal window
in which the pulses are viewed, and

®, :Modulation frequency (assumed to be

identical to that of the mode-locked pulse
train in this work), i.e.

(v, SRt N (T o )

The over bar in Eq. (1) refer to the
averaged value of the corresponding

parameter. For example, BE,B,,,EE and ¥

represent the second-order dispersion, third
order dispersion (TOD), loss, and
nonlinearity, respectively, are averaged over
the cavity length.

3. MOMENT METHOD:

As shown in previous section,
mode-locked fiber lasers are governed by
nonlinear partial differential equation Eq. (1),
which generally, does not posses analytic
solution [10] and, hence to model the pulse
that produces. Another drawback, it gives the
final pulse shape, it does not explain how
does the pulse evolutes during each
roundtrip.

To solve it numerically by one of numerical
solution method such as split or

wavelet method [3], all parameters need to be
considered including TOD and mode-

locker effect. The last two parameters have
great effect on pulse shape and stability.

As a result, to solve such third order
partial deferential equation, initial
conditions and boundary conditions need to
be known. Moreover, longtime required for
computer program to implement such
numerical solution.

It is useful to convert this third order
partial differential equation to a set of
ordinary differential equations which
describe the evolution of pulse parameters
during each roundtrip. [7] These pulse
parameters evolution equations are obtained
using so-called moment method. [10, 13]

Using moment method pulse
parameters equations, it is possible to study
the pulse evolution process under the effect
of Eq. (1), with no need to full numerical
simulation.

4. PULSE PARAMETERS EVOLUTION
EQUATION:

Depending on master equation Eq.
(1) and using the assumed pulse shapes for
both dispersion regimes after modifying
Ginzburg-Landau Equation, GLE, by adding
TOD and mode-locker effects, the extended
solution will be as in the following relations:
(7,9, 10,13].
a. Normal regime:
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Where pulse parameters for both profiles are:

(a) : pulse amplitude,

(&) : Temporal shift,

(7) : pulse width,

(q) : chirp,

(Q) : frequency shift,

ikT + i@, : represents the phase and rarely is

of physical interest in lasers producing
picoseconds pulses, which will be ignored.
[14]

A set of five equations are introduced
(Appendix A) describing pulse parameters
evolution during each roundtrip: [7, 10, 14]
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Where the constants C (n=0 to 4) are

introduced.
In case of Gaussian pulse:

. C,=C,=C,=C,=C, =1
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In the case of an auto solution,
1. C, =2/3,
2.C, =1/3,
3.C, =2n/3,
4. C,=6/n?,
5% Cp=2.
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Since the accuracy of this approach depends
upon the knowledge of exact pulse shape, it
needs for master equation Eq. (1) to

be solved numerically for more accuracy. A
numerical solution for these five equations,
using the fourth order Runge-Kutta method
demonstrates that steady-state values
obtained are deviate from the values
obtained by direct solution of Eq. (1) by:
(less than 3%) in the anomalous dispersion
regime and (less than 12%) in the normal

- dispersion regime. (7, 10]

Hence, these results justify the use of the
moment method and the pulse shapes
assumed.
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Fig (1) Block diagram model

Since the work is below zero
dispersion wavelength (1.22 pm), (the used
laser wavelength is 1.055 um) where normal
dispersion GVD must compensated, a grating
pair usually used to derive the system into
anomalous regime. [15, 16] This will make
the balancing between negative GVD and
nonlinearity leading to pulse compression
[17]. See Fig. (1) describing the simulation.
Where:

WDM: Wavelength Division Multiplexing
PBS: Polarizing Beam Splitter.

5. RESULTS AND DISCUSSIONS:

Five equations are introduced using moment
method which describes pulse parameters
evolution at each round trip. To solve these
equations numerically, a Mat-lab program
has been written using fourth-fifth order
Runge-Kutta method which uses the function
ODE-45. This method is used to solve
ordinary ditferential equations numerically.
Ytterbium doped fiber pumped by 976 nm
laser source is used with 150mW pumping
power to produce 1055 nm output laser. [9]
Mat-Lab 7.0 program uses the constants in
Table (1), with the following initial values
for pulse parameters: [7]

E(Q0)=111, &O0)=0, Q(0)=0, q(0)=0,
1(0)=0.5 ps.

A numerical solution will be done for both
normal and anomalous dispersion
regime. In normal dispersion regime, GVD

has positive values i.e. B, > 0 and solution
will be done for both cases of TOD: 3, = 0

and B =30x10"fs* /m, to study TOD

effect on pulse parameters. Executing the
computer program, results of pulse
parameters evolution plotted in Fig. (2) and
Fig. (3). Fig. (2) (a and b), for pulse energy
evolution plots, shows that there is no
difference in behavior for both cases of

TOD {“[3;_1 =), E # (). Also, E reaches its
maximum value E__ ~2.795 pJ in about

max
125 roundtrips while in anomalous regime
where B, <0 thesame E

but in 75 round trips, (as shown in Fig (4)
(a). Then damping oscillation occurs over
thousands of roundtrips where

AE = 0.015pJ(AE represents variation

between maximum and minimum value)

is achieved too,



decreasing in magnitude until steady state is
achieve steady-state .The presence of third
order dispersion (TOD) has big effect on
pulse shape especially for ultra-short pulses
of width in range (t <1 ps),soitis

necessary to include the B, parameter, since

it distorts the pulse by broadening it
asymmetrically, thus producing a temporal
and frequency shift.

As shown in Fig. (2) (a and b), in the
absence of TOD, no temporal shift (£ = 0),
while in the presence of TOD, at temporal
shift is introduced with positive and negative
oscillation , not symmetrical around zero
axis, A& ~ 90 fs (variation between
maximum and minimum) finally it converges
to zero.

The same effect for TOD on pulse frequency
shift, when 3, = 0, no frequency

shift is introduced and thus € = 0, while if
f3; has a value, a negative frequency shift is

introduced with negative oscillation, then
decreasing with increasing roundtrips,
converges (o zero steady state. As shown in
Fig. (2) for frequency shift plot, most
frequency shift is negative however,
AQ~21.5 GHzand Q ~ 2 GHzat

RT = 4000.While to achieve zero frequency

shift, RT, >> 4000. In Fig. (4a), pulse

frequency shift evolution during first
roundtrips is shown.

As shown in Fig. (3) (a) and (b), no effect for
TOD on pulse chirp. In fact normal
dispersion produces positive pulse chirp,
oscillating around zero chirp axis until
reaches zero, its steady-state value.
Oscillation is symmetrical around zero chirp
axes with Aq = 16, decreases as roundtrips

increase, again RT, >> 4000 .From plots of

pulse width evolution as in Fig. (3) (a) and
(b), for pulse width plots, a broadening in
pulse width is introduced with maximum

width (T = 8ps)in first 125 roundtrips,

max

then exhibits damped oscillation

(At = 7ps) over thousands of roundtrips
decreasing to steady-state value(t,, =~ 3ps),
where large number of roundtrips is needed
RT,, >>4000..From the plot of pulse chirp
versus pulse width as in Fig. (3), it is clear
that state is far to achieve unless large
number of roundtrips has to introduced. In

Fig. (4b), pulse chirp and width evolution are
shown during first roundtrips.

6. EFFECT OF CHANGING
MODULATION FREQUENCY OF PULSE
PARAMETERS:

Since our model considers FM-Mode-locking
fiber laser type, we will study the effect of
changing modulation frequency on pulse
parameters evolution using the same privies
(table 1) but for different values of Fr
(Fr=2.5-30GHz).

In both dispersion regimes the effect of
changing modulation frequency, on pulse
parameters is as shown in Fig. (5) & Fig. (6).

7. CONCLUSION AND FUTURE WORK:

In the present study and its numerical

results could be concluded regarding
comparison between both dispersion
regimes, and modulation frequency effect
as follow:

e For variable frequency
modulation, it is obvious that it
affected on all pulse parameters in
addition to the system stability
without exception.

e Modulation frequency affect
strongly on pulse parameters
evolution. This can be seen from
big oscillation parameter values
during roundtrips for certain
values of F, (F, = 5GHz).

e Modulation frequency does not
affect on parameter sign value,



Table (1) Constant for numerieal solution [7]

arameter value parameter value
B, +1.4x10"fs* /m B, 30x10%fs® /m
Y 0.012(mW)™ 0 0.17m™"'
g, 0.55m™" T 47 fs/rad
P 25 mW | L 4m
T, 40 ns | F 10 GHz
Ani 0.45 t, 0
A 1055 nm

since they depend mainly on
dispersion regime,

Comparing plots of pulse
parameter as function of F, for
both dispersion regimes of pulse
energy and temporal shift, it is
clear that they are almost equal
with same behavior except in

the number of roundtrips required
for peak and steady-state values
which is in anomalous less than in
normal as stated earlier.
Steady-state situation
achievement possibility increases
as F, increases. This is clear in
normal regime from plots of pulse
chirp versus pulse width. While
for anomalous there is a slight
deviation from steady-state
situation as F, increases.
However, F, plays significant
role in system stability.

The frequency shift and chirp
pulse plots for both regimes show

o

that the normal regime affected by
F. changes much more than in
anomalous regime, and unaffected
for high F, values, i.e. F, >5 GHz.
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APPENDIX A

The relation of pulse parameters with the
temporal pulse profile are as following: [7,
10, 13]

E(T) = DA(T,t)fdt .................. (A.1)

E(T) = — [ dacr t)fdt (A2)
&M= [AATO] dt .
T) = f[A a—A—A—]dt (A3)

am == [ a-ga a—A—A—«Jdt

3H(T) == 265 f (t—E)*|A(T, t)| dt ..(A.5)
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Fig. (4a): Pulse Energy, Temporal and Frequency shift evolution during first roundtrips

(Right) Normal and

(Left) Anomalous regime. (Using Table 1)
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Fig (4b): Pulse Chirp and width evolution during first roundtrips for

(Right) Normal and (Left) Anomalous regime . (Using Table 1)
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Fig. (5): Pulse Energy, Temporal shift, Frequency shift, Chirp and Width versus modulation frequency in

Modulation Fraquency Frin GHz
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