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Abstract 

    A soliton is a solitary wave whose amplitude, shape, and velocity are conserved 

after a collision with another soliton. Solitons, in general, manifest themselves in a 

large variety of wave/particle systems in nature: practically in any system that 

possesses both dispersion (in time or space) and nonlinearity. Solitons have been 

identified in optics, plasmas, fluids, condensed matter, particle physics, and 

astrophysics. Yet over the past decade, the forefront of soliton research has shifted 

to neuroscience. The Soliton model in optical fiber is a recently developed model 

that attempts to explain how signals are propagated within optical fiber without 

dispersion. In this research, it proposes that the signals travel along the Single Mode 

Optical Fiber in the form of certain kinds of sound (or density) pulses known as 

solitons. The three pulses are generated by the Korteweg-deVries equation with 

Matlab Program. The results of simulation represent the behaviors of the soliton 

signal in Fiber Optics. Computer simulation results demonstrated that the soliton 

signal can be successfully used to reduce the dispersion and attenuation effects and 

travel for a far distance along an optical fiber compared to Gaussian Signal.  
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 حساب ومحاكاة تأثيرات الموجة الانفرادية في الألياف البصرية
 

 احمد جياد كاظم
 .، بغداد، العراقالجامعة التكنولوجية، قسم هندسة الليزر والالكترونيات البصرية
 

 :خلاصة
اتساع وشكل وسرعة تكون محفوظة من التغير بعد  صفاتها من بان Soliton لـتتسم الموجة الانفرادية ا    
تظهر الموجات الانفرادية، على العموم ، في الطبيعة على شكل تَشْكِيلة . ادمها مع موجة منفردة اخرىتص

اما من الناحية العملية فانها تظهر في اي نظام يمتلك خاصيتي التشتت . الجسيمية/ كبيرة مِن لأنظمة الموجيةِ 
ادية يمكن ان تنشأ في البصريات، البلازما، لقد وجد ان الموجات الانفر . و اللاخطّيةِ ( الزماني والمكاني) 

مع كل ذلك فلقد تغيرت طليعة البحث في الموجة . الموائع، المواد المتكثفة، فيزياء الجسيمية والفيزياء الفلكية
ان النموذج الانفرادي للموجة في الالياف البصرية هو حاليا في طور التطور  .الانفرادية باتجاه عِلْمِ الأعصاب

في هذا البحث يقترح ان . حاول ان يوضح كيفية مرور الاشارة داخل الكابل الضوئي بدون تشتتوالذي ي
الاشارات تنتقل خلال كابل ضوئي احادي النمط على شكل انواع معينه من النبضات الصوتية والمعروفة 

حيث . Matlab وبرنامج Korteweg-deVriesتم توليد ثلاث نبضات باستخدام معادلة . بالموجات الانفرادية
لقد اظهرت نتائج المحاكاة الحاسوبية ان . مثلت نتائج المحاكاة تصرف الموجة الانفرادية في الالياف البصرية

يمكنها ان تستخدم بنجاح لتقليل تاثيرات التشتت والتوهين ويمكنها ان تنتقل لمسافاة بعيدة  الموجات الانفرادية
 .خلال الكابل الضوئي مقارنة باشارة غاوس

http://en.wikipedia.org/wiki/Biological_neuron_models
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Soliton
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1. Introduction  

    Nonlinear waves have long been an interest to 

scientists in a variety of disciplines. A multitude 

of applications have been employed, ranging 

from fluid dynamics and plasma physics to even 

neuroscience and biology. Waves are 

omnipresent, from tsunamis in the ocean, to 

gamma waves and sonic booms. The methods 

and results of computational wave modeling 

may be adapted to fit the specifics of another 

field [1]. 

    Nonlinearity permeates our physical world. 

The evidence for nonlinear behaviors is present 

in so many aspects of physics, chemistry, 

biology, economics, etc., that it is not possible to 

mention them all in here. Among the most 

striking and aesthetically appealing 

manifestations of nonlinearity is the propagation 

of solitons or, more generally, solitary waves, 

spatial solitons can exist in a broad branch of 

nonlinear materials, such as cubic Kerr, 

saturable, thermal, reorientation, 

photorefractive, and quadratic media, and 

periodic systems. Furthermore, the existence of 

solitons varies in topologies and dimensions [2].  

    Computer-aided modeling and simulation 

software programs are essential tools to predict 

how an optical communication component, link, 

or network will function and perform. These 

programs are able to integrate component, link, 

and network functions, thereby making the 

design process more efficient, less expensive, 

and faster. The tools typically are based on 

graphical interfaces that include a library of 

icons containing the operational characteristics 

of devices such as optical fibers, couplers, light 

sources, optical amplifiers, and optical filters, 

plus the measurement characteristics of 

instruments such as optical spectrum analyzers, 

power meters, and bit error rate testers. To 

check the capacity of the network or the 

behavior of passive and active optical devices, 

network designers invoke different optical 

power levels, transmission distances, data rates, 

and possible performance impairments in the 

simulation programs [3].  

    In this paper, Soliton theory are described and 

a simulation has been carried out throughout the 

analysis of the theories of Korteweg-deVries 

(KdV) equation using Matlab Program to 

describe the effects of soliton signal through 

single mode optical fiber.  

2. Soliton Systems 

    In recent years, pressure pulses of very short 

(picoseconds) time duration have found wide 

application as a diagnostic tool in the 

semiconductor industry and in fundamental 

condensed matter research. Besides their 

outstanding present technical applications of the 

solitary pulses difficulties or even (sometimes) 

impossibility of analytic solutions to describe 

their propagation (due to the nonlinear character 

of implied media), as well as about the 

remarkable efficiency of the computer 

simulations of otherwise inaccessible scientific 

problems [4]. Fractals – signals that display 

scale-invariant or self-similar behavior are 

ubiquitous in nature and result from a wide 

variety of physical processes, including 

diffusion, erosion, turbulence and criticality. 

The traditional view that the healthy state of an 

organism is represented by homeostatic, regular, 

steady-state behavior has been challenged by the 

observation that many physiological signals are, 

in fact, non-linear, inhomogeneous and fractal 

[5].  

    Both the effects of non-linearity and 

dispersion produce a self-sustaining and 

localized density pulse with a moving segment 

of the nerve membrane in the gel state. This 

pulse is called a soliton. The solitary wave 

maintains its shape while it travels at a constant 

speed less than the sound velocity in the lipid 

membrane. Solitons can propagate over long 

distances without loss of energy. The pulse is 

also called as adiabatic pulse, because no energy 

is lost to the environment during propagation 

[6]. 

    In the 1970’s it was realized that several of 

these nonlinear PDEs yield entire families of 

exact solutions, and not just isolated solitons. 

These families contain solutions with arbitrary 

numbers of solitons of varying speeds and 

application in the studies of nanometer-sized 

structures, the propagation of these short 

acoustic pulses over millimeter distances at low 

temperatures has revealed a new field of 

picoseconds acoustics, amplitudes, and 

undergoing mutual collisions. The three most 

studied systems have been: 

• The Korteweg-deVries equation, 

06  xxxxt uuuu ………………..…(1) 

This is a generic equation for ‘long waves’ in a 

dispersive, energy-conserving medium, to 

lowest order in the nonlinearity. 

• The Sine-Gordon equation, 
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0)sin(   xxtt …………………(2) 

    The name is a play on the Klein-Gordon 

equation, 0  xxtt . Note that the 

Sine-Gordon equation is periodic under 

 2   

• The nonlinear Schrcodinger equation, 

0||2 2   xxti …………..…(3) 

Here,   is a complex scalar filed depending on 

the sign of the second term [7]. 

A Soliton solution of KdV equation is:  

).(),( Vtxutxu   Then with Vtx  , 

We have 
 x

 and  Vt
 when 

acting on ).(),( utxu   Thus we have  

06  uuuuV …………………(4) 

Integrating once, yield  

AuuVu  23 …………………..(5) 

Where A is a constant., integrating once more, 

obtaining 

BAuuuVu  232 )(
2

1

2

1 ……(6) 

Where now both A and B are constants. Assume 

that u and all its derivatives vanish in the limit 

  which entails A=B=0. Thus  

uVu
d

du
2


 

With the substitution  

)(sec 2

2

1 hVu  ………………………..(7) 

We find  dVd
2

1
 , hence the solution is  

))(
2

(sec
2

1
),( 2

oVtx
V

hVtxu  ..…(8) 

Where x  is a distance, V  velocity, t  time and 

  is a position. Note that the maximum 

amplitude of the soliton is Vu
2

1
max 

, 

which is proportional to its velocity V . The 

KdV equation imposes no limitations on V  

other than 0V  [7]. 

3. The Fiber Optic Transmission  

    In an fiber-optic transmission, an optical 

signal, serves as the information carrying 

vehicle. Both analog and digital information are 

supported. In operation, the light is launched or 

fed into the fiber. The fiber itself is composed of 

two layers, the cladding and the core. Due to 

their different physical properties, light can 

travel down the fiber by a process called total 

internal reflection. In essence, the light travels 

through the fiber via a series of reflections that 

take place where the cladding and core meet, the 

cladding-core interface. When the light reaches 

the end of the line, it is picked up by a light-

sensitive receiver, and after a series of steps, the 

original signal is reproduced. To sum up, a 

video camera’s output or other such signal is 

converted into an optical signal in an FO system. 

It is subsequently transmitted down the line and 

converted back following its Reception [8]. 

Calculating the performance in optical fiber 

communications systems in which nonlinearity 

plays a significant role in transmission is 

difficult. The difficulty is further enlarged by the 

complex way in which different modulation 

formats — such as the return-to-zero, chirped-

return-to-zero, and differential phase- shift-

keying — interact with modern-day receivers. 

The details of the optical filtering, electrical 

filtering, and internal nonlinearity can 

significantly impact the performance in even a 

standard receiver with hard-decision decoding. 

The use of forward error correction and signal 

processing further complicates the calculation of 

the performance [9]. 

3.1. Attenuation Units 
    Signal attenuation (or fiber loss )is define as 

the ratio of the optical output power Pout from a 

fiber of length L to the optical power Pin .This 

power ratio is a function of wavelength,as is 

shown by the general attenuation curve in Figure 

-1 .The symbol  is commonly used to express 

attenuation in decibel per Kilometer [10]. 

α = log (  ) …………………(9) 

    Where Pi = optical input power, Po = optical 

output power and L= length of fiber. An ideal 

fiber would have no loss so Pout =Pin. This 

corresponds to a 0-dB attenuation, which is 

practice impossible. An actual low-loss fiber 

may have a 3-dB /Km average loss. This means 

that the optical signal power would decrease by 

50 percent over a 1-Km length and would  

decrease by 75 percent (a 6-dB loose) over 2-

Km length, since loss contributions expressed in 

decibel are additive [10]. 

3.2. Dispersion Calculation: 

    The total dispersion in single-mode fibers 

consists mainly of material and waveguide 

dispersions. The dispersion D is represented 

by:[7] 

D (λ) =  ………………………………(10) 
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Which is expressed in . The total 

broadening  of an optical pulse over a length of 

fiber L is given by:  

 = D (λ) L ………………………………(11) 

    Where is the wavelength spread of the 

source. To measure the dispersion, one 

examines the pulse delay over a wide 

wavelength range. At the zero-dispersion point 

the pulse delay will go through a minimum. To 

calculate the dispersion point the pulse delay 

will go through a minimum. To calculate the 

dispersion by:[10] 

D( )= ……..(12) 

for  1200    1600 nm 

Where  Zero Dispersion Slope:  

0.092 ,  Zero Dispersion 

Wavelength 1302nm  1322 nm and  

Operating Wavelength [10]. 

4. Evaluation of Optical Soliton in Fiber 

Optics 
The fundamental of optical soliton equation is 

derived from the nonlinear Schrödinger 

equation: 

……………(13) 

    For the partial differential equation above the 

first and second term represent the linear effects 

and the third term represent nonlinear effects. 

The linear effects involve loss (first term) and 

group velocity dispersion  (second term) but 

the nonlinear effects is defined by self phase 

modulation which depend on (  nonlinearity 

coefficient) parameter. 

 coefficient can be calculated from the relation 

below: 

………………………………….(14) 

where  are refractive index and 

affective area respectively.  

After applying split step method to solve the 

nonlinear Schrödinger equation we get the 

solution below. This solution is defined as 

soliton signal. 

……..(15) 

This solution represent the optical soliton signal 

as a function of time and distance. All solutions 

are parameterized by pulse width , also the 

solutions can be parameterized in terms of 

energy as follow: , 

where the pulse width and peak power are 

related by:  

In optical soliton, the phase of soliton is not 

stationary which unlike the amplitude. Thus 

phase evaluation is often described in terms of 

the " soliton period", where soliton period 

( ) is another way to parameterized a 

soliton. 

The spectrum of optical soliton can be obtained 

using inverse scattering method.  

= ….(16) 

    From the equation above can calculate the 

Full width Half maximum (FWHM) of a pulse, 

which is defined as the full width of the pulse at 

this half maximum power level. These 

parameters can be determined from the 

equations (17), (18) and (19).  

………………………………..(17) 

………………..(18) 

………………(19) 

    For the solution of the nonlinear Schrödinger 

the power is given by the square of the Soliton 

function. Thus  of the fundamental 

soliton pulse in normalized time is found from 

the relationship  with  

where  is the basic normalized time unit. This 

yields: 

(20) 

5. Results and Discussion  

    The mathematical description of the dynamic 

systems is not a simple task for which basic 

principles suffice. Not all complex systems can 

be modeled using basic laws to determine their 

dynamic behavior. An interesting alternative to 

solve such problems would be an experimental 

systems identification model. In other words, a 

model based on an input output system must be 

founded, which establishes a mathematical 

relation between input and output data. The 

assessment of a nonlinear system requires 

analysis of the dynamic system behavior under a 

prescribed set of events known as contingencies. 

Conventionally this is done by simulating the 

system nonlinear equations. Since the stability 

limits cannot be determined from a single 

simulation. More than one simulation is 
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required. The large size of the system adds to 

the complexity thus three pulses of KdV 

equation is described as in equation (21).  

...(21)              )))0((5.0(sec

)))1((5.0(sec)))2((5.0(sec

2

22





xChC

xBhBxAhAu
 

    This paper presents a novel method of 

simulation during and post-fault behaviors of the 

soliton system for a three soliton pulses, 

observing its dynamics during a few seconds. 

This is done by simulating the system nonlinear 

equations which called Korteweg-deVries 

(KdV) equation using Matlab. Simulation results 

on different intervals are carried out. Simulation 

of three pulses which are generated using 

equation (21) is shown below, where the 

amplitudes of these pulses are (20, 12, 14) with 

initial positions (-2, -1, 0) respectively. Due to 

this amplitude-dependent speed, as shown in 

Figure -4(a), a taller soliton originally placed 

behind a shorter one catches up with the shorter 

one and moves ahead of it after a collision as 

shown in Figure -4(b, c and d) . Also the 

behavior of a taller soliton with the other 

medium soliton is in the same manner as shown 

in Figure -5(a, b, c and d). Another important set 

of properties is observed in this collision 

process. During the collision as shown in Figure 

-4(c and d) and Figure -5(b and c), the three 

solitons do not linearly superpose (nonlinear 

collision), and as a result experience a 

significant amount of amplitude modulation. 

After the collision as shown in Figure -5(d) the 

three solitons return to their original shapes, 

however, they have acquired a permanent time 

(phase) shift due to the nonlinear collision 

shown by the difference in and in Figure -5(d) 

(with no time shift, and would be equal, since 

the time elapse before and after the collision is 

the same). 
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a - Initial positions of solitons. 
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b -Taller soliton catches up with the shorter one. 

-3 -2 -1 0 1 2 3

0

500

1000

1500

2000

x

u

t = 0.00217

 
c - collision between taller soliton and shorter soliton 
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d - After First collision. 

Figure 4. a- Initial positions of solitons. b- Taller 

soliton catches up with the shorter one.c- The 

collision between taller soliton and shorter soliton. d- 

After collision. 
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a -After the first collision. 
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b - Taller Soliton catches up with the medium one. 
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c- The collision between three solitons. 
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d- After the second collision 

Figure 5- a- After the first collision. b- Taller Soliton 

catches up with the medium one. c- The collision 

between three solitons. d- After the second collision. 

 

6. Conclusions  

    In this paper, it's found that soliton has some 

properties, such as: amplitude-dependent speed, 

amplitude modulation during the nonlinear 

collision phase modulation after the nonlinear 

collision. The inherent difficulties that arise in 

estimating the parameters of soliton signals 

make detecting solitons a difficult task. When 

the waveform shape varies significantly as a 

function of the unknown parameter, multiple 

hypotheses are used with one for each value of 

the parameter sampled over a prespecified 

range. This is often the approach used for 

detection of a signal of unknown frequency or 

unknown spatial direction. The results display 

interesting features of nonlinear dynamical 
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systems. Many insights were gained into the 

behavior of solitons, as well as into an 

application of nonlinear waves in fiber optics.  
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