Effect of few-mode fiber profile on long-haul MDM transmission

Esraa K.Hamed Mohammed A.Munshid Jassim K.Hmood

Laser and Optoelectronics Engineering Department, University of Technology, 10066 Baghdad, Iraq

Abstract

The efforts for higher spectral efficiency have increase interests in a mode division multiplexing (MDM) systems. However, sensitivity of MDM to modal crosstalk and fiber nonlinearity (leading to nonlinear phase noise) forms the main penalty. Therefore, few-mode fibers (FMFs) are designed to guide a few modes in MDM transmission. In this paper, a numerical analysis is established to estimate the transmission performance of three different kinds of few mode fibers (FMF) that can be realized in long-haul MDM systems. The fibers, namely step index-FMF (SI-FMF), graded index-FMF (GI-FMF) and transversal index-FMF (TI-FMF), are designed to carry three spatial modes. In order to explore the MDM performance, LP01, LP11a and LP11b modes are modulated with 4QAM format at 10 Gsymbol/s and sent into the fibers. Multiple-input multiple-output digital signal processing is utilized for compensating modal crosstalk. The results reveal that the signal quality that transferred by LP11 mode over GI- or TI-FMFs is substantially improved as compared to LP01 mode over entire transmission distances. However, SI-FMF fiber enables LP01 mode to transport signal with higher quality than LP11a and LP11b mode in longhaul 4QAM MDM transmission.