Abstract

This work is focused on study the electrical, optical and structure properties of prepared organic solar cell with many layers using two synthesized polymers namely (polybenzilaniline new and polynaphthoquinoneaniline). These polymers characterize by spectroscopically techniques namely FT-IR,NMR and UV_VIS.Copper oxide NP which prepared through sol-gel method and its shape and dimensions are elucidated via XRD with monoclinic phase.particle size (16.3nm) is used to enhance the absorption and electrical properties for the prepared organic solar cell. Four organic solar cell are prepared using spin coating technique. The first one used polybenzilaniline only as active layer.(0.02wt%) of copper oxide NP is added to polybenzilaniline to prepare the active layer of the second solar cell. Third Solar cell is prepared using polynaphthoquinoneailine as active layer. The forth one is prepared after adding (0.02wt%)of copper oxide NP polynaphthoquinoneailine .After adding copper oxide NP and irradiating by argon laser of (60mW), the absorbance of first and third solar cells increases respectively and shifts toward red region. The forward current reverse current, photocurrent, efficiency increase after adding CuO and using argon laser.

Contents

Chapter One: Introduction and Literature Survey
1.1 Introduction
1.2 Problem statement
1.3 The aim of work
1.4 Thesis structure
1.5 Literature Survey
Chapter Two:Theoretical Concepts
2.1 Organic solar cell
2.2 Construction of OSCs Devices
2.3 Working principle of organic solar cell12
2.4 Preparation Techniques
Spin coating technique
2.5 Characteristics of Solar Cells
2.6 Conjugated polymers
2.7 Nano technology
2.8 Copper oxide (CuO)20
2.9 Laser
Chapter ThreeMaterials & Experiments
3.1Introduction
3.2 Materials
3.2.1 ITO23
3.2.2 PEDOT:PSS
3.2.3 Synthesis of new polymers24

3.2.4 Copper oxide CuO nanoparticles	25
3.3 Device fabrication	27
3.3.1 Substrate preparation	27
3.3.2 Active layer preparation.	27
3.3.3 Spin coating of the active layer.	28
3.4 Irradiating the solar sell	29
3.5 Metallization	30
3.6 Measurements and Characterization	31
3.6.1 Polymer characterization	31
3.6.2 CuO characterization.	33
3.6.3 Thin film characterization.	34
3.6.3.1 Optical Properties.	34
3.6.3.2 Morphological properties	35
3.7.4 Electrical solar cell characterization	37
3.7.4.1 Current –voltage (I-V) measurements	37
3.7.4.2 Efficiency of the solar cells.	38
Chapter Four: Results and Discussion	39
4.1 introduction	39
4.2 Characterization of the polymers	39
4.2.1 Synthesis of the polymers	39
4.2.1 The chemical properties.	39
4.3 Characteristics of CuO.	44
4.4 Thin film characterization	46

4.4.1 Optical Properties.	46
4.2.1 Morphological properties	52
4.5 Solar cell characterization	61
4.5.1 Current – voltage (I-V) measurements	61
4.5.2 Current – voltage (I-V) characteristic under illumination	65
4.5.3 Efficiency of the device	69
Chapter Five : Conclusion & Recommendations For Future Work 5.1 Conclusion	
5.2 Future work.	
References	75

List of abbreviations

Abbreviation	Description
AFM	Atomic Force Microscopy
Al	Aluminum
ВНЈ	Bulk heterojunction
CuO	Copper oxide
FF	Fill factor
FT-IR	Fourier Transform Infrared spectroscopy
НОМО	Highest occupied molecular orbital
HTL	hole transport layer
I_{SC}	Short circuit current
I_{m}	Maximum current
ITO	Indium Tin Oxide
LUMO	Lower unoccupied molecular orbital
NMR	Nuclear Magnetic Resonance
NPs	Nanoparticles
OPV	organic photovoltaic
OSCs	Organic solar cells
PCE	power conversion efficiency
PEDOT:PSS	poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonate)
PM	maximum power
PV	photovoltaic
SEM	Scanning Electron Microscopy
TCO	transparent conductive oxide
UV-VIS	Ultraviolet Visible spectroscopy
V _{OC}	Open circuit voltage
V _m	Maximum voltage
XRD	X-Ray diffraction