

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

PLOT Linear plot.

 PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,

 then the vector is plotted versus the rows or columns of the matrix,

 whichever line up. If X is a scalar and Y is a vector, disconnected

 line objects are created and plotted as discrete points vertically at

 X.

 PLOT(Y) plots the columns of Y versus their index.

 If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)).

 In all other uses of PLOT, the imaginary part is ignored.

 Various line types, plot symbols and colors may be obtained with

 PLOT(X,Y,S) where S is a character string made from one element

 from any or all the following 3 columns:

 b blue . point - solid

 g green o circle : dotted

 r red x x-mark -. dashdot

 c cyan + plus -- dashed

 m magenta * star (none) no line

 y yellow s square

 k black d diamond

 w white v triangle (down)

 ^ triangle (up)

 < triangle (left)

 > triangle (right)

 p pentagram

 h hexagram

Graphics

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

 For example, PLOT(X,Y,'c+:') plots a cyan dotted line with a plus

 at each data point; PLOT(X,Y,'bd') plots blue diamond at each data

 point but does not draw any line.

 PLOT(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined by

 the (X,Y,S) triples, where the X's and Y's are vectors or matrices

 and the S's are strings.

 For example, PLOT(X,Y,'y-',X,Y,'go') plots the data twice, with a

 solid yellow line interpolating green circles at the data points.

 The PLOT command, if no color is specified, makes automatic use of

 the colors specified by the axes ColorOrder property. By default,

 PLOT cycles through the colors in the ColorOrder property. For

 monochrome systems, PLOT cycles over the axes LineStyleOrder property.

 Note that RGB colors in the ColorOrder property may differ from

 similarly-named colors in the (X,Y,S) triples. For example, the

 second axes ColorOrder property is medium green with RGB [0 .5 0],

 while PLOT(X,Y,'g') plots a green line with RGB [0 1 0].

 If you do not specify a marker type, PLOT uses no marker.

 If you do not specify a line style, PLOT uses a solid line.

 PLOT(AX,...) plots into the axes with handle AX.

 PLOT returns a column vector of handles to lineseries objects, one

 handle per plotted line.

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

The X,Y pairs, or X,Y,S triples, can be followed by parameter/value pairs to

specify additional properties of the lines. For example,

PLOT(X,Y,'LineWidth',2,'Color',[.6 0 0]) will create a plot with a dark red line

width of 2 points.

 Example1:

 x = -pi:pi/10:pi;

 y = tan(sin(x)) - sin(tan(x));

 plot(x,y,'--rs','LineWidth',2,...

 'MarkerEdgeColor','k',...

 'MarkerFaceColor','g',...

 'MarkerSize',10)

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

Fig.(1) example1.

[4]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Example2:

x = -pi:pi/10:pi;

 y = sin(x) ;

 plot(x,y,'--rs','LineWidth',2,...

 'MarkerEdgeColor','k',...

 'MarkerFaceColor','g',...

 'MarkerSize',10)

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Image processing in MATLAB

• Require MATLAB to be installed with image processing toolbox
• Digital image is composed of array of pixels – array of numbers (Matrix)

• Process on image is easily handled by MATLAB

Image Formats Supported

• BMP

• JPEG

• PNG
• TIFF

• PCX

• HDF

 etc.

Working formats in MATLAB

• Binary image (0=black, 1=white)
• Intensity image (gray scale image)

• Indexed image (color image)

• RGB image (true color image)
• Multiframe image

How to read image files

imread(‘file name’)
Example :

>> imread(‘image1.jpg’);

>> a = imread(‘image2.jpg’);

>> b = imread(‘image3.bmp’);

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Image file information's.

 imfinfo (‘image_file’)

Ex.
>> imfinfo (‘test_image.png’)

 ans =

 File name: ………………….
 FileModDate : ……………..

 File size : …………………..

 ………………………………

How to write image files
imwrite(var,‘file name’, ‘format’)

Example :

>> a = imread(‘image1.png’);

>> imwrite(a, ‘image2.jpg’, ‘jpeg’);
>> imwrite(a, ‘image3.bmp’, ‘bmp’);

How to display image
imshow(image_var)

or figure, imshow(image_var)

Example:
>> a = imread(‘image1.png’);

>> a

ans =
 ……………………(numeric)………………………….

>> imshow(a);

>> figure, imshow(a);

 (diff. window to display image)

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Example: Crop for a part of image

>> a = imread(‘image1.png’);
>> imshow(a) % display a

>> for i=1:50

 for j=1:50

 for k=1:3
 b(i,j,k) = a(i,j,k);

end

end

end
 or

>> b = a(1:50, 1:50, :);

>> figure, imshow(b) % display b on another window

Creation of function file

file>new
 function y = sum1(n)

 y = 0;

 for i = 1:n
 y = y + i;

 end

Save as sum1.m

 Calling this function
>>sum1(10)

ans =

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Integration
 INT Integrate

 INT(S) is the indefinite integral of S with respect to its symbolic variable as defined by SYMVAR. S is a

 SYM (matrix or scalar). If S is a constant, the integral is with respect to 'x'. INT(S,v) is the indefinite

 integral of S with respect to v. v is aalar SYM.

 INT(S,a,b) is the definite integral of S with respect to its symbolic variable from a to b. a and b are each

 double or symbolic scalars. INT(S,v,a,b) is the definite integral of S with respect to v from a to b.

 Examples:

 syms x x1 alpha u t;

 A = [cos(x*t),sin(x*t);-sin(x*t),cos(x*t)];

 int(1/(1+x^2))

 returns atan(x)

 int(sin(alpha*u),alpha)

 returns -cos(alpha*u)/u

 int(besselj(1,x),x)

 returns -besselj(0,x)

 int(x1*log(1+x1),0,1)

 returns 1/4

 int(4*x*t,x,2,sin(t))

 returns -2*t*cos(t)^2 - 6*t

 int([exp(t),exp(alpha*t)])

 returns [exp(t), exp(alpha*t)/alpha]

 int(A,t)

 returns [sin(t*x)/x, -cos(t*x)/x]

 [cos(t*x)/x, sin(t*x)/x]

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

DIFF Difference and approximate derivative.

 DIFF(X), for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)].

 DIFF(X), for a matrix X, is the matrix of row differences,

 [X(2:n,:) - X(1:n-1,:)].

 DIFF(X), for an N-D array X, is the difference along the first non-singleton dimension of X.

 DIFF(X,N) is the N-th order difference along the first non-singleton dimension (denote it by DIM).

 If N >= size(X,DIM), DIFF takes successive differences along the next non-singleton dimension.

 DIFF(X,N,DIM) is the Nth difference function along dimension DIM.

 If N >= size(X,DIM), DIFF returns an empty array.

Examples:

 h = .001; x = 0:h:pi;

 diff(sin(x.^2))/h is an approximation to 2*cos(x.^2).*x

 diff((1:10).^2) is 3:2:19

 If X = [3 7 5 0 9 2]

 then diff(X,1,1) is [-3 2 -3], diff(X,1,2) is [4 -2 9 -7],

 diff(X,2,2) is the 2nd order difference along the dimension 2,

 and diff(X,3,2) is the empty matrix.

Control Flow

• while – end

x=0;

while (x<5)

 x=x+s;
 disp(x);

End

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

• if – else – elseif – end

a=6; % a=7; % a=10;

if (rem(a,3)==0)
 a=a*3;

elseif (rem(a,2)==0)

 a=a*2;

else
 a=a*10;

end

disp (a);

• switch – case – otherwise – end

x= input (‘The value of x:’);

units= input (‘Enter the unit of x: (Please Enter the unit between ‘ ‘) ’);
switch units

 case (‘inch’,’in’)

 y=x*2.54 ;
 case (‘feet’,’ft’)

 y=x*2.54*12 ;

 case (‘meter’,’m’)

 y=x*100 ;
 case (‘millimeter’,’mm’)

 y=x/10 ;

 otherwise
 disp (‘Unknown unit’);

end

[4]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

• break

for i=1:10
 if (i>5)

 break;

 else
 a=a*4.5;

 end

end

disp (a);

Bessel Functions
 BESSEL Bessel functions of various kinds.

 Bessel functions are solutions to Bessel's differential

 equation of order NU:

 2 2 2

 x * y'' + x * y' + (x - nu) * y = 0

 There are several functions available to produce solutions to

 Bessel's equations. These are:

 BESSELJ(NU,Z) Bessel function of the first kind

 BESSELY(NU,Z) Bessel function of the second kind

 BESSELI(NU,Z) Modified Bessel function of the first kind

 BESSELK(NU,Z) Modified Bessel function of the second kind

 BESSELH(NU,K,Z) Hankel function

[5]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Examples

Example 1:

format long

z = (0:0.2:1)';

bessely(1,z)

ans =

 -Inf

 -3.32382498811185
 -1.78087204427005

 -1.26039134717739

 -0.97814417668336
 -0.78121282130029

Example2:

format long

z = (0:0.2:1)';
besseli(1,z)

[6]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Examples 3:

x=0:0.1:10;

for n=1:10

 y=besselj(x,n);
 plot(x,y)

 grid on

 hold on
end

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Input/output of Data from MATLAB Command Window
MATLAB remembers all input data in a session (anything entered through direct keyboard input or

running a script file) until the command „clear()‟ is given or you exit MATLAB. One of the many features of

MATLAB is that it enables us to deal with the vectors/matrices in the same way as scalars. For instance, to

input the matrices/ vectors,

type in the MATLAB Command window as below:

>>A = [1 2 3;4 5 6]

 A=1 2 3

 4 5 6

>>B = [3;-2;1]; %put the semicolon at the end of the statement to suppress the result printout onto the screen

>>C = [1 -2 3 -4]

At the end of the statement, press <Enter> if you want to check the result of executing the statement

immediately. Otherwise, type a semicolon “;” before pressing <Enter> so that your window will not be

overloaded by a long display of results [2].

Arithmetic Operations

+ Addition

- Subtraction

* Multiplication

.* Array multiplication

\ Left division

.\ Array left division

/ Right division

./ Array right division

^ Matrix or scalar raised to a power

. ̂ Array raised to a power

' Complex conjugate transpose

.' Real transpose

jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg541
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg544
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg547
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg54_
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55c
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55f
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55j
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55m
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55p
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55s
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55v
jar:file:///C:/Program%20Files/MATLAB/R2009b/help/toolbox/symbolic/help.jar%21/arithmeticoperations.html#bqtg55x

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Basic Functions

Function

name
Function mean

clc Clear the command window

clear Clear workspace

who Show workspace

whos Show workspace in details

help Show information about any function

lookfor Search for a word in MATLAB files

save Saving workspace

load Loading saved workspace

Getting help

>> help function
>> help load

>> help save

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Reading Data

• We can read a file containing a matrix by using the load function

 load file_name.ext

 File.ext is read into variable file_name, or
 var =load(„file name.ext‟)

 File is read into variable var

• File must be created 1 row/line, each element is separated by blank or tab or ,

• Each line must contain equal no. of data

Writing Data to Disk

• We can write a file containing a matrix by using the save function

 save file_name.ext –ascii var

 var is written to file_name.ext in ASCII

Examples
 save yyy.dat –ascii a % write a to yyy.dat in

ASCII format

>> load xxx.txt

>>xxx
………………………………………

>> a = load(„xxx.dat‟);

>> a
……………………………………….

Variables

• MATLAB variables are arrays

• Variable must be one word

– myvariable accepted
– my variable not accepted

• Variable length is up to 31 character

• Variables must begin by a character

• MATLAB variables are case sensitive
• There are preserved variable names:

[4]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

ans Default function output

pi Pi = 3.14

eps Very small value

inf Very large value = ∞ as the result of (1/0)

NaN When the result = 0/0

realmin Minimum real number = 10
-308

× 2.2251

realmax Maximum real number = 10
308

× 1.7977

nargin The number of input parameters

nargout The number of output parameters

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

MATLAB Environments

 Command window

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

 Workspace

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

[4]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

 Path browser

[5]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

 Editor window

[6]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

 Figure window

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Math functions

Basic

functions

triangular

functions

Approximation

functions

complex

functions

conversion

functions

abs cos fix abs dec2hex

sqrt sin round angle dec2bin

mean tan floor conj dec2base

power acos ceil imag hex2dec

log asin rem real bin2dec

log10 atan floor base2dec

exp csc ceil rad2deg

max sec rem deg2rad

min cot cart2sph

sort acsc cart2pol

asec pol2cart

acot sph2cart

cosh

sinh

tanh

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Relational and Logical Operators

Relational Operators

Operator name Symbol Comment

eq = = equal

ne ~= not equal

lt < less than

gt > greater than

le <= less than or equal

ge >= greater than or equal

Logical Operators

and & logical and

or | logical or

not ~ logical not

xor

logical exclusive or

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Matrix and Array

• Matrix = rectangular array of numbers
• 1-by-1  scalar

• 1-by-n or n-by-1  vector

• m-by-n  two-dim matrix

• n1-by-n2-by-n3 …  n-dim matrix

Example1:

x=[1 2 3; 4 5 6; 7 8 9];

v=[3;-6;1];

y=inv(x)*v

Example2:

x = 0:25;

y = [exp(-.07*x).*cos(x);exp(.05*x).*cos(x)]';

Example3:

x=[0 pi/10 2*pi; pi -pi 3*pi]

y=tan(x)

1. Solving Matrix Equations

[4]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Example4:

x=[10^3 10^4 10^5 10^6 10^7 10^8]

y=x.^2

Example5:

x=-10:0.01:10;

y=cos((pi.*x*(2000/(5000+1000*cos(0.0002)))*sin(0.0002

))/0.0005*10^-3).^2

IF Conditionally execute statements.The general form of the IF statement is

 IF expression

 statements

 ELSEIF expression

 statements

 ELSE

 statements

 END

The statements are executed if the real part of the expression has all non-zero

elements. The ELSE and ELSEIF parts are optional. Zero or more ELSEIF parts

can be used as well as nested IF's. The expression is usually of the form expr rop

expr where rop is ==, <, >, <=, >=, or ~=.

[5]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

 Example

 if I == J

 A(I,J) = 2;

 elseif abs(I-J) == 1

 A(I,J) = -1;

 else

 A(I,J) = 0;

 end

ELSE is used with IF. The statements after the ELSE are executed if all the

preceding IF and ELSEIF expressions are false. The general form of the IF

statement is

 IF expression

 statements

 ELSEIF expression

 statements

 ELSE

 statements

 END

MATLAB Windows
We have already described the MATLAB Command Window and the Help

Browser, and have mentioned in passing the Command History window, Current

Directory browser, Workspace browser, and Launch Pad. These, and several other

windows you will encounter as you work with MATLAB, will allow you to: control

files and folders that you and MATLAB will need to access; write and edit the small

MATLAB programs (that is, M-files) that you will utilize to run MATLAB most

effectively; keep track of the variables and functions that you define as you use

MATLAB; and design graphical models to solve problems and simulate processes.

Some of these windows launch separately, and some are embedded in the Desktop.

You can dock some of those that launch separately inside the Desktop (through the

View: Dock menu button), or you can separate windows inside your MATLAB

Desktop out to your computer desktop by clicking on the curved arrow in the upper

right.

Typing in the Command Window
Click in the Command Window to make it active. When a window becomes

active, its title bar darkens. It is also likely that your cursor will change from outline

form to solid, or from light to dark, or it may simply appear. Now you can begin

entering commands [1].

Starting MATLAB

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

• Double click on the MATLAB shortcut

Figure 1-1: A MATLAB Desktop

Quitting MATLAB
• Select File > Exit MATLAB in desktop

• Or type quit at prompt „>>„ in command window

Overview
• MATLAB = Matrix Laboratory.

• To provide easy access to software developed by LINPACK and

EISPACK projects.

• Incorporate LAPACK and BLAS lib. for matrix computation.
• Features add-on applications-specific called toolboxes.

The MATLAB System

• Desktop tools &development environment – tools and facilities to

help users use and become more productive

• Mathematical function lib.-large collection of computational
algorithms

• The language- high-level language with control flow statements

• Graphics – facilities for data visualization

• External interfaces – can be used with other programming
language like C or FORTRAN.

Reference

 [1] B. Hunt, R. Lipsman, J. Rosenberg, K. Coombes, J Osborn and G. Stuck, “A

Guide to MATLAB for Beginners and Experienced Users”, John Wiley &

Sons,2001.

[1]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

STEM Function
 STEM Discrete sequence or "stem" plot. STEM(Y) plots the data sequence Y as stems from the x axis

 terminated with circles for the data value. If Y is a matrix then each column is plotted as a separate series

 STEM(X,Y) plots the data sequence Y at the values specified in X. STEM(...,'filled') produces a stem plot

 with filled markers. STEM(...,'LINESPEC') uses the linetype specified for the stems and markers. See

 PLOT for possibilities. STEM(AX,...) plots into axes with handle AX. Use GCA to get the handle to the

 current axes or to create one if none exist. H = STEM(...) returns a vector of stem series handles in H, one

 handle per column of data in Y.

Examples

Single Series of Data
This example creates a stem plot representing the cosine of 10 values linearly spaced between 0 and 2π. Note

that the line style of the baseline is set by first getting its handle from the stemseries object's BaseLine

property.

t = linspace(-2*pi,2*pi,10);

h = stem(t,cos(t),'fill','--');

set(get(h,'BaseLine'),'LineStyle',':')

set(h,'MarkerFaceColor','red')

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

[2]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Two Series of Data on One Graph
The following example creates a stem plot from a two-column matrix. In this case, the stem function creates

two stemseries objects, one of each column of data. Both objects' handles are returned in the output argument

h.

 h(1) is the handle to the stemseries object plotting the expression exp(-.07*x).*cos(x).

 h(2) is the handle to the stemseries object plotting the expression exp(.05*x).*cos(x).

 x = 0:25;

 y = [exp(-.07*x).*cos(x);exp(.05*x).*cos(x)]';

 h = stem(x,y);

 set(h(1),'MarkerFaceColor','blue')

 set(h(2),'MarkerFaceColor','red','Marker','square')

0 5 10 15 20 25
-4

-3

-2

-1

0

1

2

3

4

Three-Dimensional Stem Plots

stem3 displays 3-D stem plots extending from the xy-plane. With only one vector argument, the stems are

plotted in one row at x = 1 or y = 1, depending on whether the argument is a column or row vector. stem3 is

intended to display data that you cannot visualize in a 2-D view.

jar:file:///C:/Program%20Files/MATLAB/R2009b/help/techdoc/help.jar%21/ref/stem3.html

[3]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Example — 3-D Stem Plot of an FFT

Fast Fourier transforms are calculated at points around the unit circle on the complex plane. It is interesting

to visualize the plot around the unit circle. Calculating the unit circle

th = (0:127)/128*2*pi;

x = cos(th);

y = sin(th);

and the magnitude frequency response of a step function. The command

f = abs(fft(ones(10,1),128));

displays the data using a 3-D stem plot, terminating the stems with filled diamond markers:

stem3(x,y,f','d','fill')

view([-65 30])

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

0

2

4

6

8

10

Real

Magnitude Frequency Response

Imaginary

Am
pl

itu
de

[4]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Fourier Transform
A theorem of mathematics says, roughly, that any function can be represented as a sum of

sinusoids of different amplitudes and frequencies. The Fourier transform is the mathematical

technique of finding the amplitudes and frequencies of those sinusoids. The Discrete Fourier

Transform (DFT) is an algorithm that calculates the Fourier transform for numerical data.
The Fast Fourier Transform is an efficient implementation of the DFT. The following

functions are available in mat lab to do Fourier transforms and related operations:

fourier
Fourier integral transform

Syntax

F = fourier(f)

F = fourier(f,v)

F = fourier(f,u,v)

Description

F = fourier(f) is the Fourier transform of the symbolic scalar f with default independent variable x.

The default return is a function of w. The Fourier transform is applied to a function of x and returns a

function of w.

If f = f(w), fourier returns a function of t.

[3].

[5]

University of Technology
Laser and Optoelectronics Engineering Department

Computer Applications

Laplace transform
laplace(F)

laplace(F, t)

laplace(F, w, z)

L = laplace(F) is the Laplace transform of the scalar symbol F with default independent variable t.

The default return is a function of s. The Laplace transform is applied to a function of t and returns a function

of s.

Example

syms a t;

f1=t^4;

f2=1/sqrt(t);

f3=exp(a*t)

L1 = laplace(f1)

L2 = laplace(f2)

L3= laplace(f3)

[1]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

Simulink

Introduction

Simulink is a software package that enables you to model, simulate, and analyze systems whose outputs

change over time. Such systems are often referred to as dynamic systems. The Simulink software can be used

to explore the behavior of a wide range of real-world dynamic systems, including electrical circuits, shock

absorbers, braking systems, and many other electrical, mechanical, and thermodynamic systems. This section

explains how Simulink works.

Simulating a dynamic system is a two-step process. First, a user creates a block diagram, using the Simulink

model editor, that graphically depicts time-dependent mathematical relationships among the system's inputs,

states, and outputs. The user then commands the Simulink software to simulate the system represented by the

model from a specified start time to a specified stop time.

Block Diagram Semantics

A classic block diagram model of a dynamic system graphically consists of blocks and lines (signals). The

history of these block diagram models is derived from engineering areas such as Feedback Control Theory

and Signal Processing. A block within a block diagram defines a dynamic system in itself. The relationships

between each elementary dynamic system in a block diagram are illustrated by the use of signals connecting

the blocks. Collectively the blocks and lines in a block diagram describe an overall dynamic system.

The Simulink product extends these classic block diagram models by introducing the notion of two classes of

blocks, nonvirtual blocks and virtual blocks. Nonvirtual blocks represent elementary systems. Virtual blocks

exist for graphical and organizational convenience only: they have no effect on the system of equations

described by the block diagram model. You can use virtual blocks to improve the readability of your models.

[2]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

[3]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

[4]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

[5]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

[6]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

[7]

University of Technology

Laser and Optoelectronics Engineering Department

Computer Applications

Reference
 Mat lab 2009b Help

	Graphics 5
	Image processing in MATLAB. 8
	Integration and bessel function 7
	Introduction to Vectors in Matlab3
	Mat lab Environment 2
	Math functions 4
	Matlab Windows
	other graphic functions 6
	Simulink. 9

