

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (1)
Logic Gate and Boolean Algebra

Object

To study the logical function and to get familiar with Boolean algebra.

Theory

A number system is nothing more than a code representing quantity. For

each circuit quantity, there is an assigned symbol for the quantity. After we

memorize the code we can count and this lead to arithmetic and higher form of

mathematics. So, the binary number system is a code that uses only two basic

symbols. These symbols can be any two distinct characters like A and B or the

customary 0 and 1.

Gate:- In logic circuit, this is a device with one output and two or more

inputs, designed in such a way that there is an output for certain combinations of

input signals.

In digital logic there are three basic elements:

1. The OR gate: It is a device whose output is a logic (1) if either or both inputs

are a logic (1). The OR gate is shown by the symbol in Fig.(1) with two

inputs (A and B).

1

2. The AND gate: It is a device whose output is a logic (1) if both of it’s inputs

are logic (1). This gate is shown by the symbol in Fig(2) with two inputs

marked A and B and one output marked X.

3. The Not gate (Inverter): Is another basic kind of a digital circuit, else called a

complementing circuit which is most simple element of digital logic. The

inverter is different from AND and OR gates, in that it has only a single

input. As a result, it dose not perform any decision making function that is

dependent on a combination of inputs. Instead the inverter simply convert

logic (1) at it's input to logic (0) at it's output and conversely, a logic (0) to

logic (1). The inverter can be represented by the symbol shown in Fig. (3).

2

Notes:

• The AND function may not be constructed of OR gates only.

• The OR function may not be constructed of AND gates only.

• The NOT function may not be constructed of AND, OR gates.

3

Two types of logic gates found often in digital circuit are the NAND

(NOTAND) and NOR (NOT-OR). As their name imply, a NAND gate is an

inverted AND function, each LOW (0) output of AND function is made HIGH

(1). And NOR gate is equivalent of an inverted OR functions and will yield

logic (1) output if both inputs are logic (0). NAND and NOR gates are shown in

Fig. (4).

Boolean algebra: is a name given to mean of mathematically manipulation of

Boolean expression for the purpose of putting them in their simplest form.

There are three law of Boolean algebra:

1. The commutative law: States that, when inputs to a logic symbol are AND ed

or OR ed, the order in which they are written doesn't affect the answer

results, therefore:

AB = BA A + B = B + A

2. The associative law: State that, the grouping of AND ed function as they

written doesn't affect the value of the output, nor dose the grouping of OR ed

function, therefore:

(AB) C = A (BC) (A + B) + C = A + (B + C)

4

3. Distributive law: Is a law provides a powerful tool for manipulation of

Boolean expressions. It states that Boolean expression, as in (Convertional)

algebra can be (Factored) or simplified through (expression), there are:

AB + AC = A (B + C)

Identities

A + 1 = 1 A + A = A A . 0 = 0

A + 0 = A

A = A

Truth Table

A + A =1

A . 1 = A

A . A = A

A. . A = 0

A truth table is a list showing all input-output combination of logic circuit

of a logic circuit. The number of horizontal rows in table equals (2n), where "n"

is the number of input variable to the logic circuit. To include all possible input

combination, we normally list the combination in a binary number progression.

Example (1):

Describe the truth table for a two-input OR gate and a three-input OR gate.

A B B A+B
0 0 0 0
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1

A B A+B
0 0 0
1 0 1
0 1 1
1 1 1

5

De Morgan's Theorems

Much of today logic implementation is based upon a set of rules called De

Morgan's Theorems. Basically these theorems demonstrate that, any logic

function can be formed from AND-NOT gates (NAND) or from OR-NOT gates

(NOR).

These rules may be summarized in the state:

1. The complement of a sum equals the product of the complements.

2. The complement of the product equals the sum of the complements.

A B

A B

6

Procedure

1. Connect the circuit shown in Fig. (1).

2. Using different states of the inputs, find the truth table of the circuit.

3. Connect the circuit in the figures and for each connection repeat step (2).

a) Fig. (2), (3).

b) Fig. (4 A and B).

c) Fig. (5 A and B).

d) Fig. (6 A and B).

e) Fig. (7 A and B) and write the Boolean expression for the output.

4. Draw and implement the logic circuit for X = AB + AB using basic logic

gates. Then describe it's truth table, and try to draw the logic circuit for the

same function using NAND gate only.

7

Discussion
1. Prepare the implementation of three inputs AND gate by using NOR gate

only. Then show how NAND gate can be used for build the logic circuit for

X = A + BC.

2. Can you suggest why all logic function in a digital system are often generated

with single gate type.

3. Draw the logical circuit (F) by using only NAND gate F = AB + D(B + C),

and describe it's truth table.

4. Prove:

8

9

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (2)

Exclusive OR Gate and it's Applications

Object
To study the logic function of exclusive OR (XOR) gate, and become

familiar with some of it's applications.

Theory
The output of XOR gate, is logic (1) when both inputs are different, and is

logic (0) when inputs are the same, Fig. (1) gives the symbol and truth table for

this gate.

X

X = A ⊕ B

Fig. (1)
Exclusive OR gate with it's Truth Table

Algebraically XOR output can be written as

implement as in Fig. (2):

X = AB + AB, and can be

A A

X X

B B

(A) Different Gates. (B) NAND Gates only.

Fig. (2)
Implementation of XOR gate

A

B

A B X = A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

1

Applications of XOR gate
There are many applications for XOR gate such as:

1. Arithmetic Operations:

The XOR gate also called (Medulo Two Adder) , since it is used t give the sum

of two binary numbers, it has been used in many arithmetic circuits (it will be

explained in latter experiments).

2. Parity Checker:

One of the advantages of using digital system, is it's capability of detecting and

correction errors. This is used specially when digital information is transmitted

or stored. One of the simplest form of error detecting is the parity checker,

assume that, we have four bit word, to detect the occurrence of an odd number

of errors in this word, a single bit will be added to the word that makes the

number of "ones" in the word either even number "Even Parity" or odd number

"Odd Parity", so, if an odd number of error occurred in the word then the total

number of ones will not remain the same, it will change from odd to even or

from even to odd. The XOR gate is the most suitable circuit to provide parity

checker. Fig. (2) given the circuit of four bit even parity checker, to have an odd

parity checker, we need to complement the output.

A
B

X

Even Parity Bit
C
D

Fig. (3)

Four Bit Even Parity Checker.

2

3. Controlled Inverter:

The XOR gate can be used as a "NOT" gate by connecting one of the inputs to

the logic (1), for this reason it can be used to complement a word by using one

of the inputs as control line, as shown in Fig. (4), when control signal is logic (0)

then, X = A; Y = B; Z = C. When control signal is logic (1) then, X = A ;

Y = B ; Z = C

A B C

Control
Signal

X Y Z

Fig. (4)
Controlled Inverter.

4. Binary to Gray / Gray to Binary Conversion:

The gray code is widely used in many digital systems, specially in shaft register

encoders and analog to digital conversion, but it is difficult to use the gray-code

in arithmetic operations, since there are only one bit change between two

consecutive gray code number, and it is unweighted code, and the XOR gate is

the most suitable gate for this purpose as shown in Fig. (5).

11

X1 X2 X3 X4 Gray A B C D
MSB Code MSB Binary

Code

MSB

A B

Binary
Code

C D

MSB

X1 X2 X3 X4

Gray
Code

(a) (b)

Fig. (5) (a). Gary to Binary (b). Binary to Gray

5. Combinational Logic Circuit Minimization:

Another useful application for XOR gate is, it's use in minimizing combinational

circuit which will be dealt with in detail in other experiment.

6. Digital Comparator:

Many practical applications require the comparator of two numbers A & B

searching for either (a) quality or (b) non quality.

If quality is what we looking for, this means A = B, then the output of the

logic network (Z1) is expressed by the function concluded from the truth table

below (Table 1).

Z1 = AB + A B

When non-quality is what we require, this means A ≠ B, then we can

concluded the Boolean expression for (Z2) from the truth table (Table 1).

Z2 = AB + AB

If the comparison is such that the states of one number with respect to the

other is to be specified one of the three conditions A > B, A < B, or A ≡ B

should be known the simple Boolean expressions are:

AB

AB

& AB + A B

for A > B.

for A < B.

for A ≡ B.

12

S.B.C

S.B.C

A = B

A B A ⊕ B

AB + A B
(Z1)

AB + AB
(Z2)

A > B A < B

0 0 0 1 0 0 0

0 1 1 0 1 0 1

1 0 1 0 1 1 0

1 1 0 1 0 0 0

Table (1)

The comparison for two number of more than one binary bit may be

summarized by the following steps:

Suppose the two numbers X = A1 A2

Y = B1 B2

1. X = Y when A1 = B1 and A2 = B2.

2. X > Y If A1 > B1 or A1 = B1 and A2 > B2.

3. X < Y If A1 < B1 or A1 = B1 and A2 < B2.

It is clear that to search for any of the three conditions it is only needed to found

the equality condition for each higher bit to the next lower bit and so on. The

way that equality condition is added to the single bit combater is shown:

A1

B1

A2

B2

Fig. (6)
Block diagram of Two-Two Bit Comparator.

13

Procedure
1. Connect the circuit shown in Fig. (1) and Fig. (2-A) and find the

truth table for the circuit.

2. Connect the circuit in Fig. (3), find the even parity bit for the numbers

---,----------,----------- and ---------, then find the odd parity bit
for the

numbers ---------,--------,----------- and -------------.

3. Connect a circuit that convert four bit word using XOR gate,

find one's complement for the numbers ---------,---------,--------- and

--------.

4. Connect 5 bit gray to binary converter circuit and find the

equivalent binary for the following gray code -------,-------,-------

and --------, then connect 3 bit binary to gray code converter circuit

and find the equivalent gray code for these binary numbers -------,-

-------,------- and ------.

5. Referring to the truth table shown in Table (1) shown in the

theory implement a circuit for single bit comparator.

Discussion
1. Draw the circuit diagram for four input XOR gate. Explain the

circuit.

2. Draw a circuit diagram that detect errors is an odd parity 5 bit word.

3. Can you add more applications for XOR gates.

4. Write down the equivalent gray code for the numbers 0-15.

5. Design a logic circuit that can compare between two-two

bit binary number. Draw the circuit and find it's truth table.
Suggest some application where comparator is useful

14

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (3)

Binary Additional (Half and Full Adders)

Object

To be able to design a circuit to add two or three binary digits.

Theory

1. The Half Adder:
Computer addition is performed using certain rules which are similar to

those used in adding decimal numbers. Started for the binary system, these rules

are as following:-

Rule (1) 0+0 = 0

Rule (2) 0+1 = 1

Rule (3) 1+1 = 0 (With Carry)

A truth table for the rules of binary addition is shown in Fig. (1). A and B

represent two-one bit binary numbers to be added. As the table shows, a sum

will be produced when A is one or B one, but not when both bits are one. This

can be stated in Boolean terms as AB + AB which, you may recall, is the

output expression for the Exclusive OR (XOR) network. The expression for the

carry output, derived from the table, is (AB). Which may capable of performing

the addition of two-one bit number.

1

2. The Full Adder:
In computer operation, the half-adder is not sufficient for adding more than

two –one numbers. Adding binary numbers that have more than two bit position

required the useful of Full Adder, which is capable of adding the two bits of

each position. For example, adding 0101 and 0101:

1 0 1

0 1 0 1

0 1 0 1

1 0 1

0 = Sum

0 1 0 1 = Carry-Out

The least significant bits of the two binary numbers are added. In this

case, "1+1 = 0" with carry. A zero comes out to the adder as the least significant

bit of the sum, and the "1" carry-out produced by this addition is stored. When

the next addition is performed, the carry-out resulting from the first addition is

fed into the adder along with two (0) bits. The addition of these two bits and the

carry-in (carry-out from the first addition) is interpreted as "0+0+1 = 1". This

equals (1) with no-carry. Therefore, the second addition produces a sum bit of

(1) and no carry-out for the next addition. The third addition, in this case "1+1+0

= 0", equals (0) with carry. The carry is again stored, becoming a carry-in for the

final addition. When the final addition is performed, then, "0+0+1 = 1" produced

(1) with no carry. Table (2) shows all possible combinations for producing the

sum and carry outputs, in truth table form.

Column A & B represented the two bits about to be added. The carry-in

column shown the carry-out which will be produced by the pervious addition.

The last two column show the sum and carry-out which will be produced by

adding the content of the first three columns. The condition required to produce

2

a (1) in the SUM column of the truth table are defined by the Boolean

expression:

SUM = A B C + A B C + A B C + A B C
By factoring "C" out of the first and last terms, the expression becomes:

SUM = C (A B + A B) + A B C + A B C

Next, by factoring " C " out of two middle terms of the original expression, we

get:

SUM = C (A B + A B) + C (A B + A B)

SUM = C (A ⊕ B) + C (A ⊕ B)

SUM = A ⊕ B ⊕ C
Similarly, the condition necessary to produced a "1" in the carry-out

column of the truth table can be defined by the expression:

CARRY − OUT = A B C + A B C + A B C + A B C
The carry-out expression can be simplified as shown below:

CARRY − OUT = A B C + A B C + A B C + A B C

= A B C + A B C + B C (A + A)

= A B C + A B C + B C

= A B C + C (A B + B)

= A B C + C (A B + B)

= A B C + A C + B C

= B (A C + C) + A C

= B (A + C) + A C

= A B + A C + B C
It is more common practice to construct a full adder using two-half adder, and

OR gate. The basic technique is shown in Fig. (1).

17

Procedure
1. Referring to the truth table (1) shown in the theory, implement a half adder

circuit.

2. Referring to the truth table (2) shown in the theory, implement a full adder

circuit.

3. What modification to the adder circuit are necessary to able to performed

binary half-subtract?

Connect this circuit and find it's truth table.

4. Design a full subtract circuit and find it's truth table.

Discussion
1. Explain how can you implement the half and full adder without using XOR

gates, show the logical circuit and compare with one you have used.

2. With the aid of logic circuit, design an adder to add two-three bit binary

numbers.

3. Discuss the methods used to speed up addition.

4. Design a half adder/subtract circuit. Using control line (Z), when Z = 1 we

get half adder, and when Z = 0 we get half subtract.

A B SUM CARRY OUT

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table (1)

Truth Table of Half Adder.

18

A B CARRY IN (Ci) SUM CARRY OUT (Co)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

SUM = A ⊕ B ⊕ C
CARRY OUT = A B + A C + B C

Table (2)
Truth Table of Full Adder

A
HALLF B
ADDER

Ci

HALLF
ADDER

CARRY OUT

SUM

19

Fig. (1)
Full Adder Using Two

Half Adder.

20

n × 2 n

Decoder
2 n n

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (4)

Decoders and Encoders

Object
To be familiar with basics of conversion from binary to decimal by using

decoder networks.

Theory

1. Decoder
The process of taking some type of code and determining what it

represents in terms of a recognizable number or character is called decoding. A

decoder is a combinational logic circuit that performs the decoding function, and

produce an output that indicates the (meaning) of the input code.

The decoder is an important part of the system which selects the cells to be read
from and write into. This particular circuit is called a decoder matrix, or simply

a decoder, and has a characteristic that for each of the possible 2n binary input
number which can be taken by the n input cells, the matrix will have a unique

one of its 2n output lines selected.

Input Output

1

The decoder is called n to m where m < 2n for example two to four line decoder,

Fig. (1) shows a two to four line decoder and its truth table.

21

W0

X1 W1

X2 W2

W3

INPUTS OUTPUTS

X2 X1 W0 W1 W2 W3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Table (1)

Two to Four Decoder Truth Table

W0

X2
W1

X1
W2

W3

Fig. (1)
Two to Four Line Decoder

 2 × 4

Decoder

22

The BCD Decoder
The BCD decoder converts each BCD code (8421) into one of ten

possible decimal digit indications. It is typically referred to as a 1 of 10 or 4 to

10 lines decoder, although other types of decoder also fall into this category

(such as an Execs – 3 decoder). A list of the ten BCD code words and their

corresponding decoding functions is shown in Table (2). Each of these decoding

functions is implemented with NAND gates to provide active LOW outputs, as

shown in Fig. (2).

DECIMAL OUTPUTS LOGIC FUNCTION

DIGIT 0 1 2 3 4 5 6 7 8 9 (X)

 0 0 1 1 1 1 1 1 1 1 1

D C B A
1 1 0 1 1 1 1 1 1 1 1

D C B A
2 1 1 0 1 1 1 1 1 1 1

D C B A
3 1 1 1 0 1 1 1 1 1 1

D C B A
4 1 1 1 1 0 1 1 1 1 1

D C B A
5 1 1 1 1 1 0 1 1 1 1

D C B A
6 1 1 1 1 1 1 0 1 1 1

D C B A
7 1 1 1 1 1 1 1 0 1 1 D C B A

8 1 1 1 1 1 1 1 1 0 1

D C B A
9 1 1 1 1 1 1 1 1 1 0

D C B A

Table (2)
Truth Table of BDC to Decimal Decoder

The 7442 is an integrated circuit BCD to Decimal decoder. Note that on

this device the inputs are A, B, C, and D where A is the least significant bit.

23

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C 0
D

A
B 1

C
D

A
B 2

C
A D

A
B

Each C 3

B

BCD
INPUT

C

D

variable and D
its
complement
are
connected D
to
appropriate
decode gate 5
input. D

6

D

7
D

8

D

9
D

Fig (2)
Logic for BCD Decoder.

4

24

2 n × n

Encoder

n 2 n

2. Encoder
An encoder is a combinational logic circuit that generate n output lines

from 2n (or less) inputs. It has the reverse function of the decoder.

Input Output

An encoder accepts digit on its inputs, such as a decimal or octal digit,

and converts it to a coded output, such as a binary or BCD. Encoder can also be

devised to encode various symbol and alphabetic characters. This process of

converting from familiar symbols or numbers to a coded format is called

encoding.

Figure (2) shown a four to two line encoder and its truth table.

INPUTS OUTPUTS

W3 W2 W1 W0 X2 X1

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

Table (3)
Truth Table of Four to Two Line Encoder.

25

W1

X1

W3

X2
W2

Fig. (3)

Four to Two line Encoder

Procedure
1. Construct a circuit as shown in Fig. (1), set data switches as shown

in the two to four lines decoder output table. Record the output

indications of L1 to L4.

2. Install one 7442 BCD to Decimal Decoder in the logic lab.
breadboard. Set

data switches as shown in the BCD to Decimal Decoder output

table in Fig. (2). Record the output indications output pins.

3. Construct the circuit as shown in Fig. (3), set data switches as

shown in the four to two line encoder truth table. Record the output

indications of L1 & L2.

Discussion
1. Design a full adder circuit using decoder.

2. Design 3 × 8 decoder from 2 × 4 decoder.

3. Design 4 × 16 decoder from 3 × 8 decoder.

4. Design octal to binary encoder.

26

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (5)

Multiplexer and Demultiplexer

Object
To demonstrate a basic Multiplexer / Demultiplexer system, and become

familiar with different types of multiplexer and demultiplexer.

Theory

1. Multiplexer
It is not necessary to use only discrete gates (AND, OR, NAND, NOR,

EXOR, EXNOR) in the design of the combinational logic circuit, with the

availability of the medium scale integrated (MSI) and large scale integrated

(LSI), it is possible to design a very complicated circuits with a simple

procedure, for example it is waste of time in most cases to try to minimize

combinational logic circuit which has eight input using tabular method, while it

will simpler if we used multiplexers.

A multiplexer is a network that has many inputs and one output, and the

value of the output will be the value of one of inputs which will be decided by

some select lines. The simplest type of multiplexer is the two line to one line

data multiplexer. Let A be one of the inputs and B is the other input and Y is the

output as in Fig. (1), and S is the select line, then

Y

Fig. (1)
Two to One Line Multiplexer

27

2 × 1

MUX

A

B

Select

Y = A if Select = 0.

Y = B if Select = 1.

The logic circuit diagram of the Two to One line Multiplexer is shown in

Fig. (2).

D0

S O/P

D1

Fig. (2)
Logic Circuit of Two to One Line Multiplexer.

There are many 2 to 1 data selectors as a MSI, for example (7498, 74157,

74158) which contains four (quadruple) two-to-one data selectors in one chip.

There are other types of multiplexers 4-to-1 line, 8-to-1 line, and 16-to-1

line multiplexer, and the number of select lines of these multiplexer are 2, 3, and

4 lines respectively. Fig.(3) shows the four to one line multiplexer and its

function block diagram.

To use the multiplexer in the design of combinational logic circuit, usually the

truth table of K-map of function is used in which the table or the map is divided

into 2, 4, 8, or 16 equal parts according to the type of multiplexer used. Some of

the inputs of the combinational circuit is connected directly to the select lines

while data lines of the multiplexer will be a function to the other inputs

according to the sun map or sub tables.

28

Example:

Design the following expression using multiplexer.

F (A, B, C) = A C + B C + A B C

Solution:

Number of variables = 3, it is better to use 4-to-1 line multiplexer, i.e.:

Number of selection lines = Number of variable -1.

The truth table of the function is shown below:
0 2 × 1
1 Y

 A
A MUX

0
1 Y A B C
A

B C

Fig. (4)

2. Demultiplexer
A demultiplexer basically revFeirgs.e(s4)the multiplexing function. It is take

data from one line and distribute them to given number of output lines. Fig. (3)

shown a one to four line demultiplexer circuit. The input data line goes to all of

the AND gates. The two select lines enable only one gate at a time and the data

appearing on the input line will pas through the selected gate to the associated

output line.

The simplest type of demultiplexer is the one to two lines DMUX. as shown in

Fig. (5).

 2 × 1

MUX

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

29

S

MUX DMUX
Input Outputs
A A

B Outputs Data Line
C

D Synchronous

Input B

C

D

(A)

Inputs
A

B

C

D

MUX

AN1

AN2

AN3

AN4

OR1

Data Line

DMUX

AN1

AN2

AN3

AN4

Output
A

B

C

D

Synchronous

E F E F

(B)

Fig. (3)
MUX/DMUX System: (A). Switch Analog. (B). Logic Gate Circuit .

Data I/P
A

B

Fig. (5)
One to Two Lines Demultiplexer

30

Procedure
1. Connect the circuit as shown in Fig. (2).

2. Apply a signal to (A) input from clock (High Speed) of the logic

INTIKIT unit. Draw the wave form.

3. Apply signal to (B) input from the pulse generator of amplitude = 5
Volt (p-

p) frequency = 50 KHz. Draw the wave form.

4. Set the selector control input (S = 0), draw the output waveform

from the multiplexer.

5. Set S = 1, draw the output waveform of the multiplexer.

6. Connect the output of MUX to the DMUX circuit of Fig. (5) and

find the output of demultiplexer when S = 0 and when S = 1.

Discussion
1. Construct 8 × 1 MUX by using 2 × 1 MUX.

2. Construct 16 × 1 MUX by using 4 × 1 MUX and 2 × 4 Decoder.

3. Give some applications for the Multiplexer.

4. How many chips of 2×1 MUX you will need if you want to

design 16×1 MUX.

5. Design the following expression using multiplexer:

F (A, B,C) = A B + A C

Put the selection circuit S1, S0 = A C, A B, B C.

31

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (6)

Flip – Flops

Object
1. To familiar the student with Flip-Flops.

2. To differentiate between various types of the Flip-Flops.

3. How to determine the next state of each type of Flip-Flops.

Theory

A Flip-Flop (F-F) is a multivibrator which has two stable state (Bistable)

High and Low. Flip-Flop (F-F) are useful devices for applications such as

counting, storing binary data and data conversion from serial to parallel

There are many different types of Flip-Flops:

1. a) Simple Set-Reset (S-R) Flip-Flip.

b) Clocked (S-R) Flip-Flop.

2. J-K Flip-Flop.

3. D-Type Flip-Flop.

4. T-Type Flip-Flop.

1. a) The Set-Rest (S-R) Flip-Flop:

Fig. (1) shows the basic construction of S-R F-F. It has two output called Q

and Q and like the toggle switch, when it's (1) output is high, it's (0) output is

low and vice-versa.

32

When the power is applied to the machine the F-F will go either to it's (Set)

or (Reset) state. The initial state is arbitrary depending on the relative

characteristics of the components which comprise the two logic gates.

33

Fig. (1-b) shows the meaning of Set and Reset states in terms of binary

voltage levels. To see how F-F operates, refer to Fig. (1-a), Assume that the

initial state is the (Set) state (L1 ON and L2 OFF), and that both the Set and

Reset lines are low (0). The Set and Reset lines are both stable when they are

low. In the Set state gate N1 provides a high level to upper inputs of the N2.

Therefore, both input to N2 are high causing it to produce a low output which

turns L2 OFF. The low output of N2 is also applied to the lower input terminal of

N1. This produces a high output from gate N1, turning L1 ON. In the set state

then, N2 is continually enabling N1, and N1 continually disabling N2.

The two gates are latched in a condition that will remain until the input

conditions on the S-R lines are changes.

If the F-F is initially in the Reset state (L2 ON and L1 OFF), in this case N1

is continually enabling N2 and N2 is continually disabling N1. The circuit is

again latched output but in the opposite direction.

Apply a high to the S terminal with the F-F in the Reset state (L2 ON and L1

OFF) at this case the output N1 go to High, reversing the latch condition of the

previous case. If a high is then applied to the R terminal, the latch condition is

reverses again (i.e. the L1 is OFF and L2 is ON).

The truth table for the S-R F-F is shown in Fig.(1-b). As the first line of the

truth table shows no change (N.C.) occur in the F-F state if both S and R lines

are Low (0).

The second line shows the input conditions needed to cause the F-F to go to

the Reset state.

The third line of the truth table shows the input condition needed to cause

the F-F to go to the Set State.

The fourth line shows a set of "illegal" input conditions which are usually

avoided by the machine designer.

The F-F cannot "remember" this state. Since the primary value of the F-F is

in its memory capability. The "illegal" input-output situation can be ignored.

34

1. b) The Clocked Set-Rest (Clock S-R) Flip-Flop:
It is also called Steered S-R Flip-Flop. When a F-F is used, it is frequently

desirable to establish the desired Set or Rest state first, then have it go to that

state at some later point in time.

The process of pre-establishing the desired state is called (Steering).

Fig.(2) shows a simple form of clocked S-R F-F. It is the same S-R F-F of

Fig.(1-a) except that a steering network comprised of additional logic gates (N3

and N4) has been added to the input circuit. The input levels at steering terminals

A and B cannot by themselves change the state of the F-F. A "trigger" or "clock"

pulse or EXT. signal shot must be applied. When this occurs, the F-F will go to

the state directed by the HIGH-LOW conditions at the steering terminal. If A is

High when the clock pulse is applied, gate N4 will be enabled. This provide a

low level to N2 switching the F-F to the reset state.

2. The J-K Flip-Flop:

The J-K F-F combines the capability of the S-R and clocked S-R Flip-Flops

into a single element. Fig.(4-a) shows the combination of the J-K F-F, and Fig.

(4-b) shows the truth table of the J-K F-F.

3. D-Type Flip-Flop:
A D-type Flip-Flop can constructed from the S-R F-F as shown in Fig. (3)

and from J-K F-F as shown in Fig.(6).

4. T-Type Flip-Flop:
A T-type F-F can be constructed from the J-K F-F as shown in Fig. (7).

35

Procedure:
1. Hook up the simple S-R F-F circuit shown in Fig. (1-a) by using integrated

circuit (I.C) type ------------ and state it's truth table.

Note:

Logic (1) = + 5 Volt = + VCC = HIGH.

Logic (0) = 0 Volt = GND = LOW.

2. Hook up the steering circuit for the clock S-R F-F of Fig.(2) and determine

the next state truth table when:

a. Clock equal to zero (GND) (Logic 0).

b. Clock equal to + VCC (Logic 1).

3. Hook up D-type F-F in Fig. (3) by using (I.C.), type --------------- with clock

terminal set to EXT signal shot, when D in it's low position (GND). State

the output Q, and when D in it's high position (+VCC) state the output Q.

4. Hook up J-K F-F shown in Fig.(5-a) and determine the output of the truth

table of Fig. (5-b) by using (I.C.) type ---------------------- .

5. Hook up the circuit shown in Fig. (6) D-type F-F by using (I.C.) type -------

--------- and state it's truth table.

6. Repeat step 5 for Fig. (7) T-type F-F.

Discussion:

1. For the simple S-R F-F try to implement the same F-F using two NOR

gates, give it's truth table.

2. What is the advantage of using J-K F-F over other types of Flip-Flops.

3. Give an electronic circuit using discrete components i.e. transistors.

Diodes and resistors for J-K F-F.

4. From the clocked S-R F-F, show how can you form D-type and T-type

Flip-Flops.

36

37

38

J S Q

T

K R Q

J S Q

T

K R Q

S1

Clock

Fig. (6)
D-Type Flip-

Flop

S1

Clock

Fig. (7)
T-Type Flip-

Flop

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. No. (7)

Digital Counter

Object
After completing this experiment, you will able to:

1. Build and analyze various a synchronous up and down counter.

2. Change the model of the counter.

3. Use an IC counter and determine how the truncate its count sequence.

Theory
Digital counter are classified as synchronous or asynchronous, dependent on

how they are clocked.

Synchronous counters are a series of Flip-Flops, each clocked at the same time,

causing the outputs of the stages (Flip-Flops) to change together. By contrast,

asynchronous counters are a series of Flip-Flops, each clocked by the previous

stage, one after the other.

Since all stages of the counter are not clocked together, a "ripple" effect

propagates as various Flip-Flops are clocked. For this reason, asynchronous

counters are called ripple counters. You can easily make a ripple counter from D

or J-K Flip-Flops by connecting them in a toggle mode. The modulus of a

counter is the number of different output states the counter may take. You can

change the modulus of ripple counter by decoding any output state and using the

decoded state to synchronously preset or clear the current count. Ripple counters

can be made to count either up or down (it can be made to count both up and

down, but usually it is easier to use a synchronous counter for an up/down

40

counter).

Fig. (1) shows a two-stage counter connected for asynchronous operation, notice

that the clock line is connected to the clock (CK) input of

only the first stage, FFA. The second stage, FFB, is triggered by the Q output
A

of FFA. FFA changes state at the positive-going edge of each clock pulse, but

FFB change only when triggered by a positive-going transition of
the Q

A
output of FFA.

Fig. (2) shows the timing diagram of QA and QB outputs.

41

A three-stage asynchronous binary counter is shown in Fig. (3-a). The basic

operation is the same as that of the two-stage counter just discussed, except that

it has eight states due to its three states. A timing diagram appears in Fig. (3-b)

for eight clock pulse.

Clock Pulse QC QB QA

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Table (1) State Table for a Three-Stage Binary Counter.

42

Notice that the counter progress through a binary count of 0 to 7 and then

recycles to the 0 state.

This counter sequence is presented in the state diagram shown in Fig. (4).

43

Fig. (4) State Diagram For A Three-Stage Binary Counter.

The synchronous counter is also called a parallel counter because the clock line

is connected in parallel to each Flip-Flop. Notice that an arrangement different

from that for the asynchronous counter. Fig. (5) shows a four-stage binary

counter and its equivalent logic symbol.

This circuit can be connected by using IC 74163 which has several futures in

addition to basic functions previously discussed for the general synchronous

binary counter. First, the counter can be preset to any for-bit binary number by

applying the proper levels to the data inputs.

The circuit below is a 4-bit synchronous binary counter. The J and K inputs of

FFA are connected to HIGH. FFB has its J-K inputs connected to the output of

FFA, and the J-K inputs of FFC are connected to the output of an AND gate that

is fed by the outputs of FFA and FFB, also the J-K inputs of FFD are connected

to the output of AND gate that is fed by the output of FFC and FFB.

44

45

Decade Counter
Decade counters are very important category of digital counter because of their

wide application, a decade counter has ten states in its sequence that is, it has

modulus of ten. It consist of four stages and can have any given sequence of

states as long as there are ten. A very common type of decade counter is the

BCD (8421) counter, which exhibits a binary-coded-decimal sequence as shown

in Table (2).

As you can see, the BCD decade counter goes through a straight binary

sequence through the binary 9 state, rather than going to the binary 10 state, it

recycles to the 0 state. A synchronous BCD decade counter is shown in Fig. (6).

CK QD QC QB QA
0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
1
1

0
0
0
0
1
1
1
1
0
0

0
0
1
1
0
0
1
1
0
0

0
1
0
1
0
1
0
1
0
1

Table (2) States Of BCD Decade Counter

46

Up-Down Counters
An up-down counter is one that is capable of progressing in either direction

through a certain sequence. An up-down counter some time called a bi-

directional counter and can have any specified sequence of states.

In general, most up-counters can be reversed at any point in their sequence.

For example the following sequence:

Procedure
1. Connect the circuit shown in Fig. (1) and find the truth table and its timing

diagram.

2. Connect the circuit shown in Fig. (3-a) and find it's truth table and the timing

diagram.

3. Use 74163 to design a four-stage synchronous counter, and find it's truth table

and timing diagram.

47

4. Use 74190 to design the BCD up/down counter, then find it's truth table and

timing diagram for BCD up counter.

5. Design parallel counter (Up/Down) using J-K F-F for the following sequence

(3, 4, 5, 6, 7, 4, 3, 2).

Discussion
1. For the four-stage binary counter connected to the 1-of-10 decoder in Figure

below, determine each of the decoder output wave form in relation to the

clock pulses. QA is the LSB of counter, and A is LSB of decoder.

2. Given a BCD decade counter, show the decoding logic required to decade

each the following states and how it should be connected to the counter. A

HIGH output indication is required for each decade state.

MSB is to the left.

(a). 0101 (b). 0111 (c). 1000

48

3. Determine the sequence of the following counter:

4. What are the applications of counter?

5. Design a counter that counts the following sequence: (1, 3, 5, 7, 9,

11) and repeat using J-K F-F.

University of Technology
Laser & Optoelectronics Engineering Department

Digital Electronics lab .

 ــ

Exp. N0. (8)

The Shift Registers and There Applications

Object

1. To familiar the students with the shift register.

2. To make use of shift register in data transfer.

Theory

Any binary machine is said to have a particular "Word Length". These

terms defines the number of bits required to represent data,

In other words, a machine which said to have a four-bit word length has

its flip flops arranged in groups of four. The group of flip flops are consider as a

single unit called a "Register".

The binary number is "Shifted" one bit at time from one flip flop to the

next. The device used in this type of transfer operation it called a "Shift

Register"

A shift register is a series of interconnected flip flops used for temporary

storage of data as shown in Fig. (1). The output of one flip flop becomes the

input of another, all the flip flops in the shift register have a common clock

signal connection and all can be set or reset at the same time. Because the data

were loaded to the circuit one bit after another and the shift register shifted them

from one flip flop to another, this sequence is referred to as serial data loading

and the circuit is called a "4-BIT SERIAL IN-SERIAL OUT SHIFT

REGISTER" as shown in Fig. (1).

50

This type of shift register accepts digital data serially that is one bit at the

time on one line. It produces the stored information on its output also in serial

form.

The alternative to serial loading of the shift register is parallel loading, for

a register with parallel data input, the bits are entered simultaneously into their

respective stages on parallel-lines, rather than on a bit-by-bit basis on one line as

with serial data inputs. Fig. (2) shows a "4 BIT PARALLEL IN-PARALLEL

OUT REGISTER". In the parallel output register the output of each stage is

available, once the data are stored, each bit appears on its respective output line

and all bits are available simultaneously, rather than on a bit-by-bit basis as with

the serial output.

If the data are loaded serially and read out in parallel, the shift register is

functioning as a "SERIAL-TO-PARALLEL CONVERTER". If the data is

loaded in parallel and shifted out serially, the shift register is functioning as a

"PARALLEL-TO-SERIAL CONVERTER". Some shift registers are configured

to allow shifting the data in both the right and left direction. These shift registers

are usually called "Universal Shift Register", because they can shift data in

either right or left direction, can load data either serially or in parallel and can

output data either serially or in parallel.

Procedure
1. Connect the circuit as shown in Fig. (1) by using 74174 I.C.

2. To clear the register set the pin CLR to GND then to VCC.

3. Show how you can store binary number 1010 in this chip. Find the state of

each flip flop after each clock pulse as shown in Table bellow and draw the

timing diagram for this case.

CLK D1 Q1 Q2 Q3 Q4

0 0 0 0 0 0

1 1

51

2 0

3 1

4 0

4. Connect the circuit as shown in Fig. (2), show how you can store the binary

number 011011 in this chip.

Discussion
1. What is the output binary number after 3-clock pulses if the number stored

in the register is 1101, and D1 is connected to GND (0).

2. In Fig. (1) if the output Q4 is returned to the D1 input of flip flop 1, and the
number stored in the register is binary 1101, what would be the output after

7-clock pulse?

3. Design 4-bit Parallel In-Serial Out shift register (PISO), using D-type Flip-

Flop.

4. Design 3-bit Serial In-Parallel Out shift register (SIPO), using J-K Flip-

Flop.

52

L1 L2 L3 L4

Data Input
D1 Q1

D2 Q2

D3 Q3

D4 Q4

>CLK >CLK >CLK >CLK

CLR CLR CLR CLR

Clock

Clear

Fig. (1)
Serial In – Serial Out Shift Register.

S1 L1 S2 L2 S3 L3 S4 L4

Clock

Clear

Fig. (2)
Parallel In – Parallel Out Shift Register.

 D1 Q1

>CLK

CLR

 D2 Q2

>CLK

CLR

 D3 Q3

>CLK

CLR

 D4 Q4

>CLK

CLR

53

1

Exp no. (9)

Microprocessor Training Kit

 Object:-

 General description to Microprocessor training kit M85-0X .

 Introduction:-

 The M85-0x LCD Kit is a single board Microprocessor Training Kit

based on 8085 Microprocessor , which is widely used to train engineers to

develop software/hardware for any industrial process & control.

 M85-0x LCD Kit provides powerful monitor EPROM & user،s RAM with

Battery Backup as shown in figure (1). The kit has 101 IBM compatible PC

keyboard & 20x2 LCD display for any Data entry / display.

This kit has line Assemble feature so that one can enter the program in

Assemble language . The kit also has the capability of interacting with PC

(computer) through RS-232C Serial link .

The input/output structure of M85-0x LCD kit provided 48 programmable I/O

lines Using 2Nos. of 8255. It has got 16 bit 3channel programmable

Timer/Counter using 8253.

The on board residents system monitor software is very powerful and provides

various software utilities like INSERT,DELETE,BLOCK MOVE, RELOCATE,

STRING, FILL&MEMORY COMPARE etc. which are very helpful in

debugging/ developing The software.

2

 THE 8085 MICROPROCESSOR:

The 8085 represents the first generation of microprocessor chips. It is an 8 bit

micro with 8 bit data bus, 16 bit address bus and a 6 bit control bus.

The data bus is used for the transfer of information between the micro chip and

the rest of the system.

The address bus is used for addressing the required place of memory. Since the

address bus is a 16 bit, then the maximum size of memory is (2)
16

=64K byte of

memory.

The control bus is composed of six signals to control the (Read/Write) of

memory and (I/O) selection.

Internally the 8085 chip contain 8 bit accumulator, used as part of all arithmetic

and logic operations performed by the microprocessor. The flag is an 8 bit

register, but utilizing only five of the bits namely: zero, sign, carry, parity, and

auxiliary carry. Also the 8085 contain six another 8 bit general purpose register,

namely: B, C, D, E, H and L.

General purpose registers can be combined as register pairs – BC, DE, and HL –

to perform some 16-bit operations. For register pair BC, register C can be

determined as the low register and register B as the high. So that registers (D

and E) and registers (H and L).

The Program Counter (PC) is 16 bit register used to point the location of the

next program step to be executed. The Stack Pointer (SP) is also a 16 bit register

used to point the location of the stack area in memory. The Processor Status

Word (PSW), is another 16 bit register which comprises the accumulator and the

flag register

 (PSW: high byte=A, Low byte=Flag register).

3

Fig(1-a)

4

 Figure (1-B)

The Intel 8085 CPU

Increment decrement

address latch (16)

A register

 (8) (accumulator)

B register (8)

D register (8)

H register (8)

C register (8)

E register (8)

L register (8)

Stack Pointer

Program Counter
Control Unit

Temporary

 register (8)

Instruction

register (8)

Arithmetic

and logic unit

(ALU) (8)

Status

Flag

Data/Address Buffer (8) Address

 Buffer (8)

AD7-AD0

Address / Data Bus

In Out

8-bit internal data bus

Control bus

A15-A8

Address Bus

5

 *Keyboard Description:-

The M85-0x LCD kit has 101 ASCII keys and 20x2 liquid Crystal Display to

communicate with the outside world. As M85-0x LCD kit is switched on, a

message “8085 LCD TRAINER KIT M85-0X_”is displayed on the LCD display

and all keys are in command mode.

LIST OF ASCKll KEYBOARD COMMANDS

1. L :- list a memory block .

2. M :- Examine/Modify Memory .

3. E :- Enter a memory block .

4. R :- Examine /modify Register .

5. S :- Single Step .

6. G :- Go .

7. B :- Block Move .

8. I :- Insert .

9. D :- Delete .

10. N :- Insert Data .

11. O :- Delete Data .

12. F :- Fill .

13. H :- Relocate .

14. J :- Memory compare

15. K :- String

The flag register is affected by the result of arithmetic and logical operations

only. The structure of flag register is as follow:

6

S (Sign flag):

This bit is set (logic 1) if the most significant bit of the result of an operation is

“1” otherwise it is reset (logic 0).

Z (Zero flag):

This bit is set if the content of the accumulator after an operation is zero,

otherwise it is reset.

CY (Carry flag):

This bit is set if an operation causes carry or borrow out of the most significant

bit of the accumulator.

AC (Auxiliary Carry):

This bit is set if there is a carry between the fourth and fifth bits of the

accumulator.

P (Parity flag):

This bit is set if the number of ones in the accumulator is even, otherwise it is

reset.

CY X P X AC X Z S

Bit 7 Bit 0

Flag register diagram

X : Don’t care

7

THE 8085 INSTRUCTION SET

The 8085 instruction set includes five different types of instructions.

1. Data Transfer Group:

Move data between registers or between memory and register.

2. Arithmetic Group:

Add, subtract increment or decrement data in registers or memory.

3. Logical Group:

AND, OR, EXCLUSIVE-OR, compare, rotate or complement data in registers

or in memory.

4. Branch Group:

Conditional and unconditional jump instructions, subroutine call instructions

and return instructions.

5. Stack, I/O, and Machine Control Group:

Includes I/O instructions, as well as instructions for maintaining the stack and

internal control flags.

Note: only Arithmetic and logical instructions affected the flag register.

The 8085 can operate either on the internal CPU registers (A, B, C, D, E, H, &

L) or in the system memory (RAM or ROM). The different addressing

capabilities on the 8085 are:

a. Implied:

Meaning that the operation involves an operation on one of the registers. (E.g.

ADD B, INR C).

b. Immediate:

Which involves an operation with a type supplied immediately after the

instruction. (E.g. ADI 03, ORI 02).

c. Direct:

Which involves an operation with data sound on the address supplied as two

bytes after the instruction. (e.g. LDA 2050, STA 2051).

8

ASSEMBLY LANGUAGE PROGRAM

Examples of instructions:

Effect
on flags

Function No.
of

Byte
s

Type Instructio
n

N
o

None rd=byte 2 Data transfer MVI

rd,byte

1

.

None rd=rs 1 Data transfer MOV rd,rs 2

.

All but

CY

r=r+1 1 arithmetic INR r 3

.

All but

CY

r=r-1 1 arithmetic DCR r 4

.

None Stop

processing

1 Machine

Control

HLT 5

.

None Pc=0008 1 Restart RST5 6

.

r: register (8-bit)

rd: destination register (8-bit)

rs: source register (8-bit)

Assembly language programs are written in a standard format as follows:

9

Comment
Operand Opcode Label Hexcode Address

; A=3
A, 03 MVI START: 3E

2000

 03 2001

; A=A+1=4

; S=0, Z=0, Ac=0,

P=0

A INR 3C 2002

; End RST5 EF 2003

The address field specifies the address of the respective instruction.

 Language program. This field contains the data to be entered to the machine.

The label field specifies the label for the program.

Opcode field specifies the 8085 instructions to be executed.

Operand field specifies the data to be operated by the corresponding instruction.

Comment field is an optional field used to comment lines.

Memory Modification and Program Entry:

Reset key is used to reset the system.

M key from keyboard is used to locate memory location to examine or modify

its contents.

 ENTER key from keyboard is used to store the display data byte in memory

and go to the next memory Location and display its contents.

 DOT (.) key from keyboard is used to start execution or to terminate program

entry.

Data PRESS

M

ENTER ENTER EEEEEEEEEE ENTER DOT

Address Data Data

1 2
n

10

e.g. Suppose we want to enter the following values in the computer:

2000

3E,

03

 MVI A, 3

2002 3C INR A

2003 EF RST5

Then the following steps are to be performed:

1. Press M

2. Press 2000 ENTER

 3. Press 3E ENTER

 4. Press 03 ENTER

 5. Press 3C ENTER

 6. Press EF ENTER

 7. Press DOT

In order to check the entries of the program, we do the following steps:

1. Press M

2. Press 2000 ENTER

3.
Press

ENTER

4. Press ENTER

11

5. Press ENTER

6. Press DOT

Register Display and Modification:

R key from keyboards used to display the contents of registers.

e.g. To display the contents of the register, do the following steps:

1. Press R key from keyboard .

2. Press A and ENTER, the contents of the acc. Is displayed.

3. Press ENTER, the contents of the register B is displayed.

4. Press ENTER, the contents of the register C is displayed.

Continuing in the same way, the contents of the registers D, E, F (flags), I

(Interrupt mask), H, L, SPH, SPL, PCH and PCL will be displayed.

Note:- If you need to examine the register contents, terminates the program with

the instruction RST5 (machine code EF) instead of HLT (machine code 76).

The RST

 instruction stops the user's program and returns control of the computer to the

monitor program.

Data R ENTER ENTER ENTER DOT < REG>
Data Data

12

Run and Single Step Modes:

S key is used to execute the program, one instruction at a time.

To execute a program in a single step mode, do the following:

e.g. To execute a program at address 2000. Do the following:

1. Press
S

2. Press 2000 ENTER

3.
Press

ENTER

4. Press ENTER

5. Press DOT

To run the program at address 2000, we use:

G key Press from keyboard is used to locate memory location to start execution.

To execute program at address 2000, do the following:

S
ENTER ENTER DOT

Address

DOT G
Address

13

1. Press
G

2. Press 2000 DOT

Lab work

Q) Shown below is a coding of a sample assembly program:

Comments Operand Opcode Label Hexcode Address

; A=5 A, 05 MVI START: 3E
2000

 05 2001

; A=A-1=4

; S=0, Z=0, Ac=0, P=0

A DCR 3D 2002

; A=A-1=3

; S=0, Z=0, Ac=0, P=1

A DCR 3D 2003

; A=A-1=2

; S=0, Z=0, Ac=0, P=0

A DCR 3D 2004

; End RST5 EF 2005

1. Enter the above program in the memory.

2. Check the values of the entered program.

3. Run the program using single step command and check the values of the registers.

4. Run the program using direct run mode.

14

Home Work

Write programs with effects

1. B=C+1 when C=50h.

2. Enter A=10 then decrement 4 from register A.

Exp.no. (10)

Command Description

Object:

 To explain the command description & understand what meaning

each character in the keyboard.

Theory:

 The M85-0X LCD kit has 101 ASCII keys and 20x2 liquid crystal

display to communicate with the outside word. As M85-0X LCD kit is

switched on, a message “8085 LCD TRAINER KIT M85-0X” is displayed on

the LCD display and all keys are in command mode.

List of AskII keyboard commands

 1. memory block (L)

L command dump specified memory block in the PC screen .

FORMAT

L low address, High address (.)

Type L followed by the starting address of the memory block to be listed ,

followed by a comma (,) and then the end address of the memory block followed

by (.) dot

Example

Suppose you want to list the data from 2000 to 2010 .

L 2000,2010 (.)

0222 21 00 21 46 AF 23 86 05 C2 05

200A 20 32 00 21 FF FF FF (.)

 2.EXAMINE/MODIFY MEMORY (M)

The M command allows you to examine and modify memory locations

individually.

The command functions as follows:

Format

M Address,(Data),………..(.)

 Type M, followed by the hexadecimal address of the first memory location you

wish to examine, followed by a space or comma.

 The contents of the location are displayed followed by a dash „-„.

 To modify the contents of the location displayed, type the new data , followed by

a comma. The higher memory location will automatically be displayed as the step

(2). A (.) at any stage terminates the command.

Example

M 2000 , C3 – 3E , 23 – 01 , FC – 06 , 02 , 21 – 80 , 3E – EF (.)

The contents of 2000 to 2002 , 2004 & 2005 are changed from C3 to 3E , 23 to

01 , FC to 06 , 21 to 80 & 3E to EF respectively where as the data at 2003

remains as it is .

Location Old contents New contents

2000

2001

2002

2003

2004

2005

C3

23

FC

02

21

3E

3E

01

06

02

80

EF

 3.ENTER A MEMORY BLOCK (E)

E command allows user to enter a program or a block of data in the RAM.

Format

E address : data , data …………(.)

 Type E followed by the starting address of the memory block to be entered,

followed by a colon (:).

 Each byte followed by a comma as it is entered from the SIOD is deposited in the

consecutive location of the memory.

 In case the terminator is colon (:) the proceeding parameter is taken as a fresh

address and the subsequent data bytes are stored in memory location starting

from the fresh address.

 A (.) terminates the command.

Example

E 2000 (enter)

 2000: 3E , 01 , 06 , 02 , 80 , EF(.)

 4.EXAMINE/MODIFY REGISTER (R)

Display & modification of CPU register is accomplished via „R‟ command.

Format

R (Register identifier………..< . >)

Register Identifier Register

A

B

C

D

E

F

I

H

L

S

P

Register A

Register B

Register C

Register D

Register E

Flag byte

Interrupt Mask

Register H

Register L

Stack Point MSB

Program Counter MSB

 Type „R‟ Followed by a single alphabet register identifier . The contents may

 now be changed if so desired. In case you do not want to modify the contents,

Just enter a comma. The contents of the next register will be printed. The register

identifiers for various CPU registers are given above.

Example

RA-11,B-22,C-33

 5.SINGLE INSTRUCTIONS (S)

This command allows executing the program one instruction at a time.

Format

S (Starting Address),

 Pressing of „S‟ Key will list the PC and first byte of the program. In case one

want to modify it, user has to entered the new address and then press comma. The

new address will be listed. In this way one can execute the program in single

instruction mode.

 This command can be terminated at any time by enter (.)

Example

The following program is to be executed in single instruction mode:

Address Opcode Instruction

2000

2002

2004

2005

3E 01

06 02

80

EF

MVI A,01

MVI B,02

ADD B

RST 5

On executing „S‟ command S2000:3E/,2002:06/,2004:80/.if one wants to execute

Further , press enter otherwise one presses (.)

 6.GO COMMAND (GO)

This command is used to execute the program in full clock speed. On pressing

this key, the program counter contents are displayed. Enter the starting address of

the program and press (.) key . The CPU will starts executing the program.

FORMAT

The format for this command will be as follows:

G (Starting address) (.)

Pressing of „G‟ Key will display the PC content and the first byte of the

instruction.

To modify it, enter the desired address & then press comma, the PC will be

modified

with new contents & the corresponding data will be listed . When (.) key is

pressed ,

CPU starts executing the program.

Suppose the program starts from 2000 then the format will be G 2000 (.)

EXAMPLE

Execute the below sample program from 2000 location.

 Address opcode instruction

 2000

 2002

 2004

 2005

 3E 01

 06 02

 80

 EF

 MVI A,01

 MVI B,02

 ADD B

 RST 5

G 2000 (.)

 7.Block move command (B)

This command allows to move the block of data from one memory location to

another location. On pressing this key,‟B_‟is displayed,type starting address,

ending address of the block to be moved and enter the destination address and

press (.) key. The format for the command is as follows:

FORMAT

B(Starting address of the source),(End address of the source),(Starting address of

the destination)(.)

 8.Insert Command (I)

This command allows to insert one or more instructions in the user‟s

program with automatic modification of the memory referenced

instructions.On pressing this command,‟I-„is displayed, enter the

starting address of the program press (enter),enter the ending the byte or

bytes are to be entered press (enter), enter the no.of bytes press (enter

)enter the required data and press (.).When all the bytes are entered

„8085 LCD TRAINER KIT M85-0X_‟ is displayed

. The format for this command is as follows:

FORMAT

I (Starting address of the program),(End address of the

program),(Addess from where the byte or bytes are to be

entered),(No.of bytes),(Data),,(.)

EXAMPLE

 Address opcode instruction

 2000

 2002

 2004

 2005

 3E 01

 06 02

 80

 EF

 MVI A,01

 MVI B,02

 ADD B

 RST 5

Now we want to insert three bytes at location 2005 (32 00 21) i.e. STA

2100 instruction.

I 2000,2005,2005,3,32,00,21,

Verify that the bytes have been inserted using examine memory

command.

 9.DELETE COMMAND (D)

This command allows to delete one or more instruction from the user

program. In this command all the memory referenced instructions also

get modified accordingly to keep the logic of the program.On pressing

this command , D_ is displayed , enter the starting address of the

program press (enter) enter Ending address of the program press (enter)

starting addresses from where the bytes are to be deleted press (enter)

ending address till where the bytes are to be deleted and press(.)after

that „8085 LCD TRAINER KIT M85-0X_‟ is displayed. The format for

this command is as follows:

FORMAT

D(Starting address of the program),(End address of the

program),(Starting address from where the bytes are to be deleted),(End

address till where the bytes are to be deleted)(.).

 10.FILL(F)

This command allows the user to fill amemory area(RAM)with

aconstant data .

FORMAT

F(Starting address of the program),(End address of the program),(Data

to be filled)(.)

EXAMPLE

Suppose the RAM area, from 2000 to 2010 is to be filled with FF.The

format will be:

F 2000,2010,XX-FF(.)

Verify that the memory area from 2000 to 2010 is filled with constant

data FF by using Examine memory command.

 11.RELOCATE (H)

This command allows the user to relocate the program from one

memory area to another memory area. The relocate command is

somewhat different from Block Move command. This can be set to be

the intelligent mode of Block Move command i.e. if user wants to

execute a program from a different RAM area, this command will set

the program as required. This can be understood clearly after working

with the example given below.

FORMAT

H(Starting address),(Ending Address),(Destination address) (.)

 12.MEMORY COMPARE (J)

This command allows the user to compare two blocks of memory for equality. If

they are not equal the address of the first block at which there is a difference will

be displayed.

FORMAT

J(Starting address of first block),(Ending address of first block),(Straying address

of second block)(.)

EXAMPLE

Enter the following data using Examine Memory command:

 Address opcode instruction

 2000

 2002

 2004

 2005

 3E 01

 06 02

 80

 EF

 MVI A,01

 MVI B,02

 ADD B

 RST 5

Now block move this block to 2100 using Block move command. Now user

Memory

Compare command as follows:

J 2000,2005,2100(.)

If the two blocks are identical,‟8085 LCD TRAINER KIT M85-0X_‟is displayed.

Now change the contents of 2004 location to 10 using EXAMINE MEMORY

Command. Again use the memory compare command as mentioned above. You

will see that an address 2004 with its data will be displayed. On pressing (enter)

„8085 LCD TRAINER KIT M85-0X_‟ is displayed. It mean other contents are

compared same.

 13.STRING(K)

This command allows to find the address or addresses at which a particular string

of data is lying with in a specified program. The word string here means a few

bytes of data lying consecutively one after another.

FORMAT

K(Starting address),(Ending address),(Address where the first byte lies),(Address

where the last byte lies)(.)

EXAMPLE

Suppose in the example given below , if you want to find out the addresses at

which the CALL DELAY instruction is lying.

Address opcode instruction

2000

2002

2004

2006

2008

200B

200D

200F

2012

3E 80

D3 03

3E 55

D3 00

CD A6 03

3E AA

D3 00

CD A6 03

C3 04 20

MVI A,80

OUT 03

MVI A,55

OUT 00

CALL DELAY

MVI A,AA

OUT 00

CALL DELAY

JMP 2004

K 2000,2014,2006,2008(.)

In the above example, note the two addresses at which CALL DELAY is lying.

These addresses will be 2008 and 200F. Verify by Examine Memory command

that CD A6 03 is lying at 2008 on wards.As the string found at location 2008, the

message”STRING FOUND AT:2008”will come. Now go ahead by pressing

(enter).

Lab work:

1. Inter to register A (04) and to register B (05) and then change the content of

register B to (02).

2. Delete three bytes of the program from 2005 to 2007.

 Address opcode instruction

 2000

 2002

 2004

 2005

 2008

 3E 01

 06 02

 80

 32 00 21

 EF

 MVI A,01

 MVI B,02

 ADD B

 STA 2100H

 RST5
3. Move the program from location 2000-2005 to location 2100.

Address opcode instruction

2000

2002

2004

2005

3E 01

06 02

80

EF

MVI A,01

MVI B,02

ADD B

RST 5

Home work

1. Write a program to add two number (1,2)hex and move the program to address

2100 and compare with the program that starting from address 2000.

2. Relocate the program lying from 2000-200A to 2200,the program is given

below.

Address OpCode Instruction

2000

2002

2004

2005

2008

3E 01

0602

80

32 00 21

C3 02 20

MVI A,01

MVI B,02

ADD B

STA 2100H

JMP 2002

3. How to fill the memory area to constant data(FF) .

 11

EXP. NO. (11)

DATA TRANSFER AND ARITHMETIC INSTRUCTIONS

OBJECT:

To understand and to program the 8085 microprocessor with programs utilizing

the data transfer and arithmetic instruction groups.

THEORY

An instruction in the data transfer group, transfers data from a source location to a

destination location. Either of these may be a memory location or a register.

The data transfer operations are:

1. MVI rd , byte :- This instruction moves the immediate data given after the

instruction into register rd.

2. MOV rd , rs :- This instruction moves data from register rs to register rd.

3. LXI rp, 16-bit:- This instruction moves 16-bit data or address to register pair.

 4.XCHG: The contents of register H are exchanged with the contents of register D, and

the contents of register L are exchanged with the contents of register E.

Effect

on flags

Function No. of

Bytes

Type Instruction No

None rd=byte 2 Data transfer MVI rd,byte 1.

None rd=rs

1 Data transfer MOV rd,rs 2.

None rp=16-bit (data/

address)

Lreg=Lbyte,

Hreg=Hbyte

3 Data transfer LXI rp,16-bit 3.

None HL DE 1 Data Transfer XCHG 4.

rd: destination register (8-bit), rs: source register (8-bit).

rp: register pair (16-bit): (BC, DE, and HL)

The arithmetic operations are:

The arithmetic instructions perform operations on the data stored in memory or

registers and affect the flag register. These instructions are:

1. INR r :- This instruction increments the contents of the register r.

 r=r+1

2. ADD r :- This instruction adds the contents of the register r to the accumulator, and

store the results back into the accumulator.

 A=A+r

 12

3. ADI byte:- This instruction adds 8-bit data (byte) to the accumulator, and stores the

results back into the accumulator.

 A=A+byte

4. ADC r :- This instruction adds the contents of the register r to the accumulator, but

also adds the carry from pervious step, and store the results back into the

accumulator.

 A=A+r+Cy

5. ACI byte :- This instruction adds 8-bit data to the accumulator, but also adds the

carry from pervious step, and store the results back into the accumulator.

 A=A+byte+Cy

6. DCR r :- This instruction decrements the contents of the register r.

 r=r-1

7. SUB r :- This instruction subtracts the contents of the register r from the accumulator,

and stores the results back into the accumulator.

 A=A-r

8. SUI byte:- This instruction subtracts 8-bit data (byte) from the accumulator, and

stores the results back into the accumulator.

 A=A-byte

9. SBB r :- This instruction subtracts the contents of the register r from the accumulator,

but also subtracts the carry from pervious step, and store the results back into the

accumulator.

 A=A-r-Cy

10. SBI byte :- This instruction subtracts 8-bit data from the accumulator, but also

subtracts the carry from pervious step, and store the results back into the accumulator.

 A=A-byte-Cy

11. DAA:- This instruction converts the contents of accumulator from a binary value to

two 4-bit binary coded decimal (BCD) digits. This is the only instruction that uses the

auxiliary flag to perform the binary to BCD conversion.

The conversion procedure is as follow:-

 If the value of the low-order 4-bits in the accumulator is greater than 9 or if the AC flag

is set, the instruction adds 6 to the low-order four bits.

If the value of the high-order 4-bits in the accumulator is greater than 9 or if the carry

flag is set, the instruction adds 6 to the high-order four bits.

 A=BCD number (A)

12. INX rp :- This instruction increments the contents of the register pair rp.

 rp=rp+1

13. DCX rp :- This instruction decrements the contents of the register pair rp.

 rp=rp – 1

14. DAD rp:- This instruction adds the contents of the register pair rp to the contents of

register pair HL and store the result back into the HL.

 HL=HL +rp

 13

Notes:-

1- Most of the arithmetic instructions affect the contents of an important CPU

register; namely the flag register.

2- Most of arithmetic instructions using 8-bit registers are done using the

accumulator.

3- The increment or the decrement operations can be performed in any register.

4- For the addition of 8-bit registers, the accumulator is always the 1
st
 operand, but

the addition of 16-bit registers, the HL register pair is always the 1
st
 operand.

Example
Find the summation of register B and register C and put the result in register D, when

B=5 and C=3
Comments Operand Opcode Label Hexcode Address

; B=5 B, 5 MVI START: 06 2000

 05 2001

; C=3 C,3 MVI 0E 2002

03 2003

; A=B=5 A,B MOV 78 2004

; A=A+C=8

; S=0, Z=0, Ac=0, P=0, Cy=0

C ADD 81 2005

; D=A=8 D,A MOV 57 2006

; End RST1 CF 2007

Effect

Function No. of

Bytes

Type Instruction No

All but CY r=r+1 1 arithmetic INR r 1.

All A=A+r 1 arithmetic ADD r 2.

All A=A+byte 2 arithmetic ADI byte 3.

All A=A+r+CY 1 arithmetic ADC r 4.

All A=A+byte+CY 2 arithmetic ACI byte 5.

All but CY r=r-1 1 arithmetic DCR r 6.

All A=A-r 1 arithmetic SUB r 7.

All A=A-byte 2 arithmetic SUI byte 8.

All A=A-r-CY 1 arithmetic SBB r 9.

All A=A-Byte-CY 2 arithmetic SBI byte 10.

All A=BCD number (A) 1 arithmetic DAA 11.

NONE rp=rp+1 1 arithmetic INX rp 12.

NONE rp=rp-1 1 arithmetic DCX rp 13.

CY HL=HL+rp 1 arithmetic DAD rp 14.

 14

Lab Work

1. A=(B-C)-(D+E) when BC=0a502h, DE=403h

2. C=(B+20)+(D-30)-1 when B=20h, D=40h

3. HL=BC+DE when BC=2ffh and DE=102h using Instructions use Register Pair

Home Work

Write programs with effects

1. Exchange the content of DE with HL when DE=15ah, HL=8b1ch Instructions use

Register Pair.

2. Put the same value (30h) in register H and register L, then subtract 10h from register

H and add 10h to register L, after that increment register H by 1 and decrement

register L by 1.

3. HL=BC+DE when BC=2ffh and DE=102h using Instructions use 8-bit Registers

4. H=(A-10h)-(C+3ah)+1 when A=5fh, C=10h

5. What is the result of each instruction of the following program and its effect?

 MVI A,2Fh

 SUI 20

 INR A

 MVI B,8

 ADD B

 DCR A

 MVI C,7

 SUB C

 SUI 10

 RST1

 15

EXP. NO. (12)

LOGICAL INSTRUCTIONS OF THE 8085 MICROPROCESSOR

OBJECT:

To study the logical capabilities of the 8085 microprocessor.

THEORY

The logical instructions, as the name implies perform logical operations on the

data stored in the memory or the register. These operations are supported by the three

different modes of addressing which are; the implied, immediate and direct modes.

All the addressing modes use the accumulator as the second operand to perform

one of the following instructions, and generated a result again in the accumulator. The

corresponding flags are set according to the result after each instruction. The logical

instructions supported by these operations are:

1. AND Operation (ANA, ANI) :- These instructions ANDs the accumulator with the

required 8-bit data, and put the result again in the accumulator. These instructions

are symbol as follows:

A=A.X

2. OR Operation (ORA, ORI) :- These instructions ORs the accumulator with the

required 8-bit data, and put the results again in the accumulator. These instructions

are symbol as follows:

A=A+X

3. EX-OR Operation (XRA, XRI) :- These instructions Exclusive-ORs the accumulator

with the required 8-bit data, and put the results again in the accumulator. These

instructions are symbol as follows:

A=AX

4. Rotate Operations (RLC, RRC, RAL and RAR) :- These instructions address the

accumulator only. They perform a shift left or shift right of the accumulator

contents.

5. Complement Operation (CMA) :- This instruction also addresses the accumulator

only. It performs the ONEs complement of the accumulator contents.

A= A

6. Also falling under this category are certain instructions that do not affect the contents

of the accumulator or any other register, yet it affects the appropriate flags. These

instructions are:

Compare Operations (CMP, CPI) :- These instructions compare the accumulator with

the required 8-bit data, setting the appropriate flag and leaving the accumulator

untouched.

 16

Notes:-

1- Most of logical instructions affect the contents of an important CPU register;

namely the flag register.

2- Except CMC and STC instructions. All Logical instructions use accumulator as

the 1
st
 operand.

3- You can use STC then CMC to reset the carry flag CY.

Effect Function No. of
Bytes

Type Instruction No

All A=A and r 1 Logical ANA r 1.

All A=A and byte 2 Logical ANI byte 2.

All A=A or r 1 Logical ORA r 3.

All A=A or byte 2 Logical ORI byte 4.

All A=A xor r 1 Logical XRA r 5.

All A=A xor byte 2 Logical XRI byte 6.

None
A=A

1 Logical CMA 7.

CY
CY=CY

1 Logical CMC 8.

CY CY=1 1 Logical STC 9.

 17

Review of logical operations:
1. Complement

E.g.:

MVI A,5Ah

CMA

HLT

 A= 5Ah= 01011010

 A=0A5h= 10100101

2. And

E.g.:

MVI A,5Ah

MVI B,1Fh

ANA B ; or directly using ANI 1FH

HLT

 A= 5Ah= 01011010

 B= 1Fh= 00011111

 A AND B=1Ah= 00011010 ; 1=1 AND 1 ONLY, otherwise=0

3. Or

E.g.:

MVI A,5Ah

MVI B,1Fh

ORA B ; or directly using ORI 1FH

HLT

 A= 5Ah= 01011010

 B= 1Fh= 00011111

 A OR B=5Fh= 01011111 ; 0=0 OR 0 ONLY, otherwise=1

4. Xor

E.g.:

MVI A,5Ah

MVI B,1Fh

XRA B ; or directly using XRI 1FH

HLT

 A= 5Ah= 01011010

 B= 1Fh= 00011111

 A XOR B=45h= 01000101 ; 0=0 XOR 0, 0=1 XOR 1, otherwise=1

 18

Notes:-
 The instruction XRA A is used to reset the accumulator which is preferred than

MVI A, 0 because the 1
st
 instruction is translated to one byte rather than the 2

nd
 one

which translated to two bytes.

E.g.:

Reset the Accumulator

MVI A,5bh

XRA A

HLT

 A= 5bh= 01011011

 A= 5bh= 01011011

 A xor A=0 = 00000000

 To complement specific bits of the accumulator, use XRI instruction with byte when

the corresponding bits are set and the other bits are reset.

E.g.:

Complement bit0 and bit7 of A, when A=5b

MVI A,5bh

XRI 81

HLT

 A= 5bh= 01011011

 81= 10000001

 A xor 81=dah = 11011010

 To set specific bits of the accumulator, use ORI instruction with byte when the

corresponding bits are set and the other bits are reset.

E.g.:

Set bit0 of A, when A=5ah

MVI A,5ah

ORI 1

HLT

 A= 5ah= 01011010

 1= 00000001

 A OR 1=5bh= 01011011

 19

 To reset specific bits of the accumulator, use ANI instruction with byte when the

corresponding bits are reset and the other bits are set.

E.g.:

Reset bit0 of A, when A=5bh

MVI A,5bh

ANI 0feh

HLT

 A= 5bh= 01011011

 0Feh= 11111110

 A AND 0feh=5ah = 01011010

 In other word reset bits means mask these specific bits. Bit masking involves

isolating one or more bits in a binary quantity while hiding or masking the unwanted

bits is usually done with the logical instructions. Then you can used unmask bits in

decision making when using branch instructions. In more precise words this

operation is called checking status bit which involve ANI instruction with byte

when the corresponding bits are set and the other bits are reset. Then we can check

the result if it is zero that is mean that the status bit still unready, otherwise the status

bit is one and wanted state is ready.

E.g.:

Mask all bits of A=5bh except bit 4 (checking status bit 4)

MVI A,5bh

ANI 10

HLT

 A= 5bh= 01011011

 10= 00010000

 A AND 10=10 = 00010000

 20

Rotate Instructions
RAL: Each binary bit of the accumulator is rotated left by one position through the

carry flag. Bit D7 is placed in the bit in the carry flag and the carry flag is placed

in the least significant position D0.

RAR: Each binary bit of the accumulator is rotated right by one position through the

carry flag. Bit D0 is placed in the carry flag and the bit in the carry flag is placed

in the most significant position D7.

RLC: Each binary bit of the accumulator is rotated left by one position Bit D7 is placed

in the position of D0 as well as in the carry flag.

RRC: Each binary bit of the accumulator is rotated right by one position Bit D0 is placed

in the position of D7 as well as in the carry flag.

Examples

RAL

CY=1 CY=0
STC ; CY=1

MVI A,8fh ; A=8fh

RAL ; A=1fh, CY=1

MVI A,8fh ; A=8fh

RAL ; A=1eh, CY=1

RAR

CY=1 CY=0
STC ; CY=1

MVI A,1fh ; A=1fh

RAR ; A=8fh, CY=1

MVI A,1fh ; A=1fh

RAR ; A=0fh, CY=1

RLC

CY=1 CY=0
STC ; CY=1

MVI A,8fh ; A=8fh

RLC ; A=1fh, CY=1

MVI A,8fh ;A=8fh

RLC ; A=1fh, CY=1

RRC

CY=1 CY=0
STC ; CY=1

MVI A,1fh ; A=1fh

RRC ; A=8fh, CY=1

MVI A,1fh ; A=1fh

RRC ; A=8fh, CY=1

 21

Effect Benefits Function No. of
Bytes

Type Instruction No

CY

only

Delay,

Mull. By 2
*reset cy

before using

this

instruction

Shift left A one

pos., bit0=old cy

New cy=bit7

1 Logical RAL

(Rotate All

Left)

1.

CY

only

Delay,

Div. By 2
*reset cy

before using

this

instruction

Shift Right A

one pos.,

bit7=old cy,

New cy=bit0

1 Logical RAR

(Rotate All

Right)

2.

CY

only

Delay,

Check bit7

which

saved in the

cy. Use

RRC then

to retrieve

the old byte

Shift left A one

pos., bit0=bit7,

New cy=bit7

CY

1 Logical RLC

(Rotate Left

with Carry)

3.

CY

only

Delay,

Check bit0

which

saved in the

cy. Use

RLC then

to retrieve

the old byte

Shift Right A

one pos.,

bit7=bit0,

New cy=bit0

1 Logical RRC

(Rotate Right

with Carry)

4.

Notice:-
1- Each of these instructions manipulates the accumulator and the (CY) flag during the

rotation process. The rotate instructions are often used to check the status of

individual bit. This is done by rotating the bit into the carry flag, and then using the

JC, JNC instructions to jump, based on the (CY) flag value.

2- Rotate instructions are also used to perform binary multiplication and division. A

binary value is multiplied by (2) by shifting the bits left by one bit position. Similarly,

a number is divided by two by shifting it right.

A

 CY

New old

A

 CY

Old new

A

A CY

 22

LAB Work

1. C=(A+D) XOR (C AND 15h) when A=0F1h, D=0E3h, C=36h

2. D=(H OR B) NAND (C-D) when H=15h, B=2Ah, C=0Ah, D=5

Home Work
Write programs with effects

1- HL= (BC+HL) OR DE (use register pair when necessary), when BC=105h,

HL=340h, DE=180h

2- Reset bits 0,2 of A and set bits 4,6,7 when A=0A7H

3- D=(C OR 5) - (B XOR D) when D=3fh, BC=1da5h

4- What is the effect of the following instructions:

ANA A, ORA A, CMA, XRA A when A=75h

5- What is the result of each instruction of the following program and its effect?

 MVI A,56h

 CMA

 STC

 MVI B,0FH

 ANA B

 ANI 1

 ORA B

 ORI 80h

 XRA B

 XRA A

 XRI 32h

 STC

 RST1

 23

EXP. NO. (13)

COMPARSION AND JUMP INSTRUCTIONS OF THE 8085

MICROPROCESSOR

OBJECT:

To study the comparison capabilities of the 8085 microprocessor and to further

investigate the conditional and unconditional branch instructions.

THEORY:

Compare Operations (CMP, CPI) :- These instructions compare the accumulator

with the required 8-bit data, setting the appropriate flag and leaving the accumulator

untouched.

The result of the comparison is shown by setting the flags as follows:-

If A = (r/byte) then CY=0 and Z=1

If A < (r/byte) then CY=1 and Z=0

If A > (r/byte) then CY=0 and Z=0

Notes of flags affection
 We can see from the previous experiments that only arithmetic and logical

instructions affect the flag register, and we notice some exceptions.

1- The four rotate instructions, STC, CMC, and DAD instructions affect carry flag only

and we can write the effect is: CY.

2- DCR and INR instructions affect all the flag bits except the carry bit and we can

write the effect is: All but CY.

3- INX, DCX, and CMA instructions don’t affect any flag bits and we can write the

effect is: None.

4- Other arithmetic and logical instructions affect all the flag bits and we can write the

effect is: All.

Effect Function No. of
Bytes

Type Instruction No

All Compare r with A (A-r) 1 Logical CMP r 1.

All Compare byte with A

(A-byte)

2 Logical CPI byte 2.

 24

It is known that the flow of some program may be deviated by specific jump

instructions. These jumps test the status of the appropriate flags and jump accordingly

to the specified address, given by the two bytes following the jump instruction in the

order (Low Byte, High Byte). The types of JUMPs supported are:

1. JMP (address) :- This instruction jumps unconditionally to the specified address.

2. JZ (address) :- This instruction tests the zero flag bit, and jumps to the specified

address if this bit is set.

3. JNZ (address) :- This instruction tests the zero flag bit, and jumps to the specified

address if this bit is reset.

4. JC (address) :- This instruction tests the carry flag bit, and jumps to the specified

address if this bit is set.

5. JNC (address) :- This instruction tests the carry flag bit, and jumps to the specified

address if this bit is reset.

6. JM (address) :- This instruction tests the sign flag bit, and jumps to the specified

address if this bit is set.

7. JP (address) :- This instruction tests the sign flag bit, and jumps to the specified

address if this bit is reset.

8. JPE (address) :- This instruction tests the parity flag bit, and jumps to the specified

address if this bit is set (even parity).

9. JPO (address) :- This instruction tests the parity flag, bit, and jumps to the

specified address if this bit is reset (odd parity).

Pc: program counter. Notice: Jumps inst. Check the flags but not affect the flags

Effect Function No. of
Bytes

Type Instruction No

None Pc=address 3 Branch JMP address 1.

None Pc=address if Z=1 3 Branch JZ address 2.

None Pc=address if Z=0 3 Branch JNZ address 3.

None Pc=address if CY=1 3 Branch JC address 4.

None Pc=address if CY=0 3 Branch JNC address 5.

None Pc=address if S=1 3 Branch JM address 6.

None Pc=address if S=0 3 Branch JP address 7.

None Pc=address if P=1 3 Branch JPE address 8.

None Pc=address if P=0 3 Branch JPO address 9.

Example:-
Check if A+B = 50 then

increment the result
 MVI A, …

 MVI B, …

 ADD B

 CPI 50

 JNZ end

 INR A

End: RST1

Example:-
Check if A+B = 0 then

increment the result
 MVI A, …

 MVI B, …

 ADD B

 JNZ end

 INR A

End: RST1

Example:-
Check if A = 0 then

increment A
 MVI A, …

 ANA A ; (/ ORA A/

 ; CPI 0/ ADI 0)

 JNZ end

 INR A

End: RST1

 25

Counters
 Designing a counter is a frequent programming application. Counters are used

primarily to keep track of events.

 A counter is designed by loading an appropriate count in a register. A loop is set

up decrement the count for a down-counter (counts in the descending order) by using

the DCR (decrement by one) instruction or to increment the count for an up-counter

(counts in the ascending order) by using the INR (increment by one) instruction. A loop

is established to update the counter, and each count is checked to determine whether it

has reached the final number; if not the loop is repeated.

Examples:-

1- 1>= No. of loops < 256

2- No. of loops = 256

3- No. of loops > 256

Note:- You can see that down-counter is preferred to use than up-counter.

Using down-counter:-

 MVI C,8

Loop: DCR C

 JNZ Loop

 RST1

Using UP-counter:-

 MVI C,0

Loop: INR C

 MOV A, C

 CPI 8

 JNZ Loop

 RST1

Using down-counter:-

 MVI C,0

Loop: DCR C

 JNZ Loop

 RST1

No. of loops >= 256

Using UP-counter:-

 LXI B,0

Loop: INX B

 MOV A,C

 CPI lowbyteno

 JNZ Loop

 MOV A,B

 CPI highbyteno

 JNZ loop

 RST1

Using down-counter:-

 LXI B, 3b5h

Loop: DCX B ; not effect Z flag

; To affect the Z flag and check if B or

C is not finished then continue the loop

 MOV A,C

 ORA B

 JNZ Loop

 RST1

 26

Useful instructions:

PCHL: The contents of register H and L are copied into the program counter. The

contents of H are placed as a high-order byte and of L as a low-order byte.

Effect Function No. of

Bytes
Type Instruction

None PC=HL 1 Branch PCHL

LAB Work
1- exclusive or register A and B, then add 3 to register C if the parity is even otherwise

add 30h to C, when A=35h, B=20h, C=10h

2- Check if the content of register B is even then C=1, otherwise C=2. (by using two

methods)

3- Calculate the sum of numbers between 10 and 1.

Home Work
1- Compare the value of register A and B, then obtain the last value of A:

 A=A+10h when A=B

 A=A+5 when A>B

 A=A+20h when A<B

2- Calculate the result of (8*8) by using two methods.

3- Calculate 11/4=2 and the remainder is 3

4- Calculate the result of C=B
2
+5 when B=5

1

Exp.no. (14)

Digital to Analog converters

OBJECT:-

To Interface Digital -to-Analog converter to 8085 using 8255 and write

Assembly Language Program to generate Ramp Wave form.

THEORY:-

Digital-to-Analog Conversion or simply DAC, is a device that is used to convert a

digital (usually binary) code into an analog signal (current, voltage, or electric

charge). Digital-to-analog conversion is the primary means by which digital

equipment such as computer-based systems are able to translate digital data into

real-world signals that are more understandable to or useable by humans, such as

music, speech, pictures, video. It also allows digital control of machines,

equipment, household appliances. When data is in binary form, the 0's and 1's may

be of several forms such as the TTL form where the logic zero may be a value up

to 0.8 volts and the 1 may be a voltage from 2 to 5 volts. The data can be converted

to clean digital form using gates which are designed to be on or off depending on

the value of the incoming signal. Data in clean binary digital form can be

converted to an analog form by using a summing amplifier. Here is a simplified

functional diagram of an 8-bit DAC.

http://en.wikipedia.org/wiki/Current_(electricity)
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Electric_charge

2

There are mainly two techniques used for digital to analog conversion

1. Weighted Summing Amplifier

2. R-2R Network Approach

Weighted Sum DAC

One way to achieve D/A conversion is to use a summing amplifier.

This approach is not satisfactory for a large number of bits because it requires too

much precision in the summing resistors.

This problem is overcome in the R-2R network DAC.

3

R-2R Ladder DAC

The summing amplifier with the R-2R ladder of resistances shown produces the

output where the D's take the value 0 or 1.

The digital inputs could be TTL voltages which close the switches on a logical 1

and leave it grounded for a logical 0.

This is illustrated for 4 bits, but can be extended to any number with just the

resistance values R and 2R.

4

The interfacing of DAC 0808 with microprocessor 8085 is shown below. Here,
programmable peripheral interface, 8255 is used as parallel port to send the digital data
to DAC.

5

Interfacing Digital-To-Analog converter to 8085 using 8255

Figure below shows the interfacing of DAC 0808 with microprocessor

8085. Here, programmable peripheral interface, 8255 is used as parallel port

to send the digital data to DAC.

I/O Map for 8255

Port/Register Address

Port A 00
Port B O 1
Port C 02

Control Register 03

Program:

MVI A, 80H ; Initialization -control word for 8255 to Configure all ports as output
 ports
 OUT 03

MVI A, DATA ; Load 8-bit data to be sent at the input of 0808 DAC

OUT 00 ; Send data on port A.

A Circuit Description of DAC module

When chip select of DAC is enabled then DAC will convert digital input value

given through portliness PB0-PB7 to analog value. The analog output from DAC is

a current quantity. This current is converted to voltage using OPAMP based

current-to-voltage converter. The voltage outputs (+/- 8V for bipolar 0 to 8V for

unipolar mode) of OPAMP are connected to CRO to see the wave form. Port A &

Port B are connected to channel 1 and channel 2 respectively. A reference voltage

of 8V is generated using 723 and is given to Verify points of the DAC 0800. The

standard output voltage will be 7.98V when FF is outputted and will be 0V when

00 is outputted. The Output of DAC-0800 is fed to the operational amplifier to

get the final output as X OUT and YOUT.

6

Figure shows analog output voltage v0 is plotted against all 16 possible digital

input words.

Performance Parameters of DAC:

The performance parameters of DAC are:

 1. Resolution

Resolution is defined in two ways.

 Resolution is the number of different analog output values that can be

provided by a DAC. For an n-bit DAC

 Resolution = 2
n ……… (1)

7

 Resolution is also defined as the ratio of a change in output voltage

resulting from a change of 1 LSB at the digital inputs. For an n-bit

DAC it can be given as:

 Resolution= VoFs/2
n

-1 ………(2)

 Where, VoFs = Full scale output voltage

From equation(1), we can say that, the resolution can be determined by

the number of bits in the input binary word. For an 8-bit resolution can be

given as

resolution = 2
n
 = 2

8
 = 256

If the full scale output voltage is 10.2 V then by second definition the

resolution for an 8-bit can be given as

Resolution= VoFs/2
n

-1 = 10.2/2
 8

-1 =10.2/255

 = 40 mV/LSB

Therefore, we can say that an input change of 1 LSB causes the output to

change by 40 mv

2. Accuracy

lt is a comparison of actual output voltage with expected output. It is

expressed in percentage. Ideally, the accuracy of DAC should be, at worst,

±1/2, of its LSB. If the full scale output voltage is 10.2 V then for an 8-bit

DAC accuracy can be given as

 Accuracy = VoFs/(2
n

-1)2

 = 10.2/255x2 = 20 mV

8

PROCEDURE:-

1. Connect power supply 8V & GND to both microprocessor trainer kit &

DAC interfacing kit.

2. Connect data bus between microprocessor trainer kit & DAC interfacing kit.

3. Enter the program to generate Ramp Wave.

4. Execute your program from respective locations and observe the waveform

on oscilloscope.

HOME WORK

 An 8 bit DAC has an output voltage range of 0 – 2.55 V. Define

its resolution in two ways.

 A 12-bit DAC has a step size of 8 mv. Determine the full scale

output voltage and percentage resolution.

 Write a program to output this signal

 VoFs

 Time

9

Programmable Peripheral Interface-8255:-

The 8255 is a general purpose programmable I/O device used for

parallel data transfer. It has 24 I/O pins which can be grouped in three 8-bit

parallel ports: Port A, Port B and Port C. The eight bits of port C can be

used as individual bits or be grouped in two 4-bit ports: Cupper (Cu) and C

lower, (CL).

The 8255, primarily, can be programmed in two basic modes Bit

Set/Reset (BSR) mode and I/O mode. The BSR mode is used to set or reset

the bits in port C.

 The I/O mode is further divided into three modes:

 Mode0 : Simple Input/output.

Mode1: Input/output with handshake.

 Mode2: Bi-directional I/O data transfer.

The function of I/O pins (input or output) and modes of operation of I/O

ports can be programmed by writing proper control word in the control

word register. Each bit in the control word has a specific meaning and the

status of these bits decides the function and operating mode of the I/O

ports.

10

PIN Diagram:

11

12

For I/O Mode

The mode definition format for I/O mode is shown in Figure below The

control words for both, mode definition and Bit Set-Reset are loaded into

the same control register, with bit D7 used for specifying whether the

word loaded into the control register is a mode definition word or Bit

Set-Reset word. If D7 is high, the word is taken as a mode .definition

word, and if it is low, it is taken as a Bit Set-Reset word. The appropriate

bits are set or reset depending on the type of operation desired, and

loaded. In to the control register.

	ex 1 logic gate
	University of Technology
	Digital Electronics lab .

	Exp. No. (1)
	Logic Gate and Boolean Algebra

	Theory
	Notes:
	(AB) C = A (BC) (A + B) + C = A + (B + C)
	AB + AC = A (B + C)
	Identities
	Truth Table
	Example (1):
	De Morgan's Theorems

	Procedure

	Discussion

	ex 2 exclusive or
	University of Technology
	Digital Electronics lab .

	Exp. No. (2)
	Theory
	X A B
	Fig. (1)
	Different Gates. (B) NAND Gates only.
	Arithmetic Operations:
	Parity Checker:

	Fig. (3)
	Controlled Inverter:

	Y B ;
	Fig. (4)
	Binary to Gray / Gray to Binary Conversion:

	Fig. (5) (a). Gary to Binary (b). Binary to Gray
	Combinational Logic Circuit Minimization:
	Digital Comparator:

	AB
	Table (1)

	Discussion

	ex 3 half and full adder
	University of Technology
	Digital Electronics lab .

	Exp. No. (3)
	Theory
	The Half Adder:
	AB AB
	SUM A B C A B C A B C A B C
	SUM C (A B A B) A B C A B C
	SUM C (A B A B) C (A B A B)
	SUM C (A B) C (A B)
	CARRY OUT A B C A B C A B C A B C
	CARRY OUT A B C A B C A B C A B C

	Procedure
	Discussion
	Table (1)
	Fig. (1)

	ex 4 decoder and encoder
	Exp. No. (4) Decoders and Encoders
	Theory
	Decoder
	Input Output
	Table (1)
	Fig. (1)
	Table (2)
	Fig (2)
	Input Output
	Table (3)
	Fig. (3)

	Discussion

	ex 5 multiplexer and demultiplexer
	University of Technology
	Digital Electronics lab .

	Exp. No. (5) Multiplexer and Demultiplexer
	Theory
	Multiplexer
	Fig. (1)
	Fig. (2)
	Example:
	Solution:
	A

	Demultiplexer
	(A)
	(B)
	Fig. (5)

	Discussion
	F A, B,CA B A C

	ex 6 flip flop
	University of Technology
	Digital Electronics lab .

	Exp. No. (6) Flip – Flops
	Theory
	1. a) The Set-Rest (S-R) Flip-Flop:
	b) The Clocked Set-Rest (Clock S-R) Flip-Flop:
	The J-K Flip-Flop:
	D-Type Flip-Flop:
	T-Type Flip-Flop:

	Procedure:
	Note:

	Discussion:
	Fig. (6)
	Fig. (7)

	ex 7 digital counter
	Digital Electronics lab .
	Exp. No. (7) Digital Counter
	Theory
	Table (1) State Table for a Three-Stage Binary Counter.
	Table (2) States Of BCD Decade Counter

	Procedure
	Discussion

	ex 8 shift register
	University of Technology
	Digital Electronics lab .

	Exp. N0. (8)
	Theory
	Procedure
	Discussion
	Fig. (1)
	Fig. (2)

	EXP (9)mp.training kit
	EXP (10)command description
	EXP (11) mathmatic instruction
	EXP (12)logical instruction
	EXP (13)comp and jump
	EXP (14)dac

