Abstract

Differential Optical Absorption Spectroscopy (DOAS) technique is the one of techniques for measurement, analysis and managing air pollution, study the chemical properties of trace gases in the atmosphere, identification of critical (peak) value to determine the concentration of trace gases that cause an air pollution in industrial-urban locations, and are use in evaluating criteria of photochemical or smog pollution cases of fewer days, and in analysis of wind direction.

According to these issues the (DOAS) technique has been developed to become one of techniques that has high order in practical performance based on UV-Visible and near infrared region at spectral range of (200-1100nm) wavelength absorption by molecules of gases in atmosphere. The experimental work of this thesis has been focused on calibration of the system with laboratory experiments to detect many atmospheric gases which are, nitrogen oxides (NO, NO₂ and NO₃ radical).

DOAS technique is based on the principle of optical absorption by molecule of gas over several meters to many kilometers length, DOAS gives average concentration measurement lead's to general pollution estimation at long distances, and consequently avoids local perturbation events in points measurements, the DOAS technique provides typical database by using the language of C# compared with results get it from experimental measurement obtainable low cost test and best resulted.

Т

List of Figures

Figure	Page
Fig. (1.1) Principle of (LIDAR) system	3
Fig.(2.1) Sketch to an experimental trace gas absorbance at open path	15
Fig. (2.2) Principle Beer Lambert's law	16
Fig. (2.3) Scheme of DOAS as a shown principle components the Beer- Lambert's A: with retro reflector [1], B: without retro reflector	17
Fig. (2.4) Compensate of turbulence beam dispersion by corner cube arrangement of retro reflector, compare with reflector (plane mirror)	21
Fig. (2.5) Cass grain telescope [52].	21
Fig. (2.6) Total internal reflection (TIR) inside optical fiber core (OFC)	22
Fig.(2.7) Cross section chanals by fiber optics bundle	22
Fig.(2.8) Scheme of the high resolution (HR4000) spectrometer.	23
Fig.(2.9) Vertical profile in average global atmospheric temperature with different altitude	25
Fig (2.10) Atmospheric lifetime, distribution of nitrogen oxides in the troposphere	26
Fig. (2.11) Different sources of Nitrogen Oxides	27
Fig. (2.12) The principle of trace gas detection by induced fluorescence spectroscopy technique	29
Fig. (2.13) Schematic principle of absorption spectroscopic trace gas detection of DOAS technique	30
Fig. (2.14) Sketch of the beam process by effect turbulence long-path average position	32
Fig.(3.1a) Experimental set up of DOAS technique	34
Fig.(3.1b) Schematic block diagram of DOAS technique	34

Fig.(3.2)Schematic diagram for the gas chamber used for DOAS experiment	35
Fig. (3.3) photographic pictures for laboratory the experimental setup	36
Fig.(3.4a) Schematic diagram for UV/VIS. Spectrometer technique	37
Fig.(3.4b) shows the UV/Vis. Spectrometer device	37
Fig.(3.5) The Zolix spectrometric system devices	38
Fig.(3.6) photographic picture of the deuterium and halogen lamps	39
Fig.(3.7a) Deuterium lamp spectrum.	39
Fig.(3.7b).Halogen lamp spectrum	40
Fig. (4.1a) The absorption spectrum of theNaNO ₂ atconcentrations, 15ppm	45
Fig. (4.1b) The absorption spectrum of theNaNo ₂ atconcentrations, 20ppm	45
Fig. (4.1c) The absorption spectrum of theNaNo ₂ atconcentrations, 30ppm	46
Fig. (4.1d) The absorption spectrum of theNaNo ₂ atconcentrations, 55ppm	46
Fig. (4.1e) The absorption spectrum of the NaNo ₂ atconcentrations100ppm	47
Fig. (4.1f) The absorption spectrum of theNaNo ₂ atconcentrations125ppm	47
Fig. (4.1g) The absorption spectrum of the NaNo ₂ at concentration 150ppm	48
Fig. (4.2a) The absorption spectrum of the $BaNO_3$ at concentrations, 15 ppm	49
Fig. (4.2b) The absorption spectrum of the $BaNO_3$ at concentrations, 25 ppm	49
Fig. (4.2c) The absorption spectrum of the $BaNO_3$ at concentrations, 50 ppm	49
Fig. (4.2d). The absorption spectrum of the $BaNO_3$ at concentrations, 100 ppm.	50

Fig. (4.3a) The absorption spectrum of the NH_4NO_3 at	51
concentrations15ppm	51
Fig. (4.3b) The absorption spectrum of theNH ₄ NO ₃ at concentrations25	51
ppm	51
Fig. (4.3c) The absorption spectrum of theNH ₄ NO ₃ at concentrations50	50
ppm	52
Fig. (4.3d) Calibration curve of an absorbance as a function of	50
concentration, 15, 25, and 50 in ppm of the NH ₄ NO ₃ solution	52
Fig.(4.3e) Calibration curve and the best fit line of absorbance as a	
function of NH ₄ NO ₃ standard concentration.	53
Fig. $(4.4a)$ The absorption spectrum of the BiNO ₃ at concentrations	
5ppm	54
Fig. (4.4b) The absorption spectrum of the $BiNO_3$ at concentrations	
7ppm	55
Fig. (4.4c) The absorption spectrum of the $BiNO_3$ at	
concentrations9ppm	56
Fig. $(4.4d)$ The absorption spectrum of the BiNO ₃ at	
concentrations12ppm	57
Fig. $(4.4e)$ The absorption spectrum of the BiNO ₃ at concentrations15ppn	
8. ()F	57
Fig. $(4.4f)$ The absorption spectrum of the BiNO ₃ at concentrations 25ppr	
	58
Fig. $(4.4g)$ The absorption spectrum of the BiNO ₃ at	
concentrations100ppm	58
Fig. (4.4h) Calibration curve of an absorbance as a function of	
concentration 5 7 9 12 15 25 and 100 ppm of the BiNO ₂ solution	58
Fig. $(4.5a)$ The absorption spectrum of the CuNO ₃ at	
concentrations15nnm	59
Fig. (4.5b) The absorption spectrum of the $CuNO_2$ at	
concentrations 25 nnm	59
Fig $(4.5c)$ The absorption spectrum of the CuNO ₂ at	
appendix tions 50 nnm	60
Eig (4.5d) Collibration and a sharehan as a function of	
rig.(4.50) Canoration curve of an absorbance as a function of	60
concentration, 15, 25, and 50 ppm of the $CuNO_3$ solution.	50
Fig. (4.6) Differential absorption cross-sections of different species	61
(NOx) at 4m, in the laboratory	01
Fig (4.7a) The absorption spectrum of the $(BiNO_2)$ at	
rig.(1.74) The description spectrum of the (Dir(03) at	60

Fig.(4.7b) The absorption spectrum of the (BaNO ₃) at concentrations,50,100 and 150ppm at variable distances	62
Fig.(4.8a) The absorption spectrum of the(NH ₄ NO ₃) concentrations	
50ppmat distance 1m.	63
Fig.(4.8b) The absorption spectrum of the (NH_4NO_3) concentration	(2)
50ppm at distance 2m.	63
Fig.(4.8 c) The absorption spectrum of the (NH_4NO_3)	<i>с</i> 1
concentration 50ppm at distance 3m.	64
Fig.(4.8d) The absorption spectrum of the (NH_4NO_3) concentration	61
50ppm at distance 4m.	04
Fig.(4.8e) The absorption spectrum of the (NH_4NO_3) concentration	65
50ppm at distance 8 m.	05
Fig.(4.8f) The absorption spectrum of the (NH_4NO_3) concentration	65
50ppm at distance 9m.	05
Fig.(4.8g) The absorption spectrum of the (NH_4NO_3) concentration.	66
Suppose at distance 10m $Fig. (4.8h)$ The absorption spectrum of the (NH NO.) concentration 50 ppr	
at distance 11m.	66
Fig.(4.8i) The absorption spectrum of the(NH ₄ NO ₃) concentration 50ppm at distance 12m.	67
Fig.(4.8j) The absorption spectrum of the(NH ₄ NO ₃) concentration 50ppm at distance 13m.	67
Fig.(4.8k) The absorption spectrum of the(NH ₄ NO ₃) concentration 50ppmat distance 14m	68
Fig.(4.8i) The absorption spectrum of the (NH ₄ NO ₃) concentration 50ppm at distance 15m.	68
Fig.(4.8m) The absorption spectrum of the(NH ₄ NO ₃) concentration	<u> </u>
50ppm at distance 18m(with and without sample)	69

List of Tables

Table	Page
Table(2.1)Comparison between different sources of lamp used in active (DOAS) applications.	19
Table (2.2)The main infrastructure of the unpolluted dry atmosphere.	25
Table(4.1). Relationship between irradiance and distance through Beer Lambert's law.	43

List of Symbols

Symbol	Caption	Unit
E _{exci.}	Excitation Energy of Upper Level	Cm ⁻¹
ΔΕ	The Excitation Energy for Radiation	Cm ⁻¹
Ι	Average Intensity of Light	(W/cm^2)
ppm	Part per million	
LOD	Limits of Detection	
ε _o	Permittivity of Free Space = 8.854×10^{-14}	(F/m)
c	Velocity of Light = 3×10^8	(m/s)
α	Absorption Coefficient	(cm) ⁻¹
λ	Wavelength	(nm)
$\Delta \lambda$	Wave different	(nm)
h	Planks Constant = 6.62×10^{-34}	(J . s)
d	Distance	m
t	Time	S
S(λ)	Spectral Response	(A/W)
Q.Ε (λ)	Quantum Efficiency at Wavelength λ	(%)
K _B	Boltzmann's Constant = 1.38×10^{-23}	(J/K)
L	Path Length	(m)
$I_{o}(\lambda)$	Initial Intensity	(W/cm^2)

$I_{tr}(\lambda)$	Transmitted Intensity	(W/cm^2)
c ⁻	The Average Concentration	Mole./cm ³
2 (λ)	Absorption Cross Section of the Substance	cm^2
$\sigma_{i}{}^{-}(\lambda)$	Rapidly Varying Cross Section	cm^2
$\sigma_{i}{}^{s}\left(\lambda ight)$	Slowly Varying Cross Section	cm^2
R	Reflectance	%
α	Deviation	Degree& Radian
$\varepsilon_{_{R}}(\lambda)$	Rayleigh(λ) Extinction Coefficient	cm ⁻²
$\varepsilon_{_{M}}\left(\lambda ight)$	Mie(λ) Extinction Coefficient	cm ⁻⁽¹³⁾
D (λ)	Optical Density	
Ψ	Radiation Energy per Unit Time	(Joule/sec) =Watt
A	Radiation Area	cm ²
Ω	Solid Angle in Steroidal	Sr
ΔR	The Distance Interval to be Averaged	m
K	Constant of the System	
E ₀	The Radiation Energy Emitted by the Laser	Joule
C s(R)	Concentration of Backscattering	Mole/cm ³ , g/l or Molary
C A(R)	Concentration of the Absorbers	Mole/cm ³ , mg/l or Molary.
ра	Pascal (= 10^{-5} bar = 10^{-5} atm.= 760×10^{-5} mmHg= 760×10 ⁻⁵ torr)	N/m ²

List of Abbreviations

Differential Optical Absorption Spectroscopy	DOAS
Principal Components Analysis	PCA
Improvised Explosive Devices	IED
Charge Coupled Device	CCD
Intensified Charge Coupled Device	ICCD
Fiber Optics Cable	FOC
Total Internal Reflection	TIR
Silicon Detector	Si D
Differential Absorption Lidar	DIAL
Cavity Ring Down Spectroscopy	CRDS
High Resolution	HR
Ultraviolet-Visible and Near Infrared	UV/VIS/NIR
Cavity Enhanced Spectroscopy (CEAS)	CEAS
Correlation Spectroscopy	COSPEC
The Cabauw Inter Comparison Campaign of Nitrogen Dioxide Measuring Instruments	CINDI
Multi-Axis Differential Optical Absorption Spectroscopy	MAX DOAS
And Others (et alia)	et al
Automatic Monitoring Instrument	API
Percent Difference	PD
a. u.	Altitude unit

Contents Subject Page Abstract Ι List of Figures Π List of Tables V List of Symbols VI List of Abbreviations VIII Contents IX Chapter One: Introduction & Literature Review 1.1. Overview 1 1.2. Comparison between DOAS and Traditional Techniques 2 a) Light Detection and Ranging (LIDAR) 2 b) Differential Absorption LIDAR (DIAL) 4 c) White Light (LIDAR) 5 d) Laser Induces Fluorescence (LIF) 5 e) Cavity Ring Dawn Spectroscopy (CRDS) 6 and Cavity Enhanced Spectroscopy (CEAS) 1.3. Advantages and Disadvantages of DOAS Technique 7 a) Advantages of DOAS 7 b) Disadvantages of DOAS 8

1.4. Applications of DOAS	8
1.5. Literature Survey	8
1.6. Aim of the Work	13
1.7. Outline of Thesis	13
Chapter Two: Theoretical Background of DOAS Technique	
2.1. Introduction	14
2.2. Fundamentals of DOAS Technique	14
2.3. Principle of DOAS Technique	15
2.4. Apparatus of DOAS Technique	19
2.4.1: The light Sources	19
2.4.2. Beam Collimator	20
2.4.3. Retro Reflector	20
2.4.4. Receiver Telescope	21
2.4.5. Transmission Lines (Optical fiber)	22
2.4.6. Spectrometer Device	23
2.5. Nitrogen Oxides in the Atmosphere	24
2.6. Effects of Nitrogen Oxides	28
2.7. Spectroscopic Techniques for Chemical Analysis of Materials	28
2.8.1. The Fluorescence Technique	28

2.8.2. Absorption Spectroscopy	30
2.9. Radiation Transfer in the Atmosphere	31
Chapter Three: Experimental Work	
3.1. Introduction	33
3.2. Experimental Setup	34
3.2.1. DOAS Technique	34
3.2.2. UV/VIS Spectrophotometer Measurements	36
3.2.3. Zolix Spectrometric System	37
3.3: Light Source Parameters for Deuterium and Halogen Lamps	38
3.4. Limits of Detection (LoD)	40
Chapter Four: Results and Discussion	
4.1: Introduction:	42
4.2: Calculation the Power Density (Intensity)	42
4.3. The Concentration of Solution	43
4.4. Effect of the Light Beam on the Absorption Intensity for Nitrate and Nitrite Compositions Solutions:	44
4.4.1. Effect of the Light Beam on the Absorption Intensity for Sodium Nitrite (NaNO ₂) Solution	44
4.4.2. Effect of the Light Source on the Barium Nitrate (BaNO ₃) Solution Absorption Intensity:	48
4.4.3. Effect of the Light Source on the Ammonium nitrate (NH ₄ NO ₃) Solution Absorption Intensity	50
4.4.4. Effect of the Light Source on the Bismuth Nitrate(BiNO ₃)Solution Absorption Intensity	54
XI	

4.4.5. Effect of the Light Source on the Copper Nitrate (CuNO ₃) Solution Absorption Intensity	59
4.5. Effect of the Light Source on the Differential Absorption for Nitrogen Oxides	60
4.6. Discussion	69
Chapter Five : Conclusions and Suggestions for Future Work	
5.1. Conclusion	71
5.2. Future Work	72
References	73