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Abstract 

 Differential Optical Absorption Spectroscopy (DOAS) technique is the 

one of techniques for measurement, analysis and managing air pollution, 

study the chemical properties of trace gases in the atmosphere, identification 

of critical (peak) value to determine the concentration of trace gases that 

cause an air pollution in industrial-urban locations, and are use in evaluating 

criteria of photochemical or smog pollution cases of fewer days, and in  

analysis of wind direction.  

According to these issues the (DOAS) technique has been developed to 

become one of techniques that has high order in practical performance based 

on UV-Visible and near infrared region at spectral range of (200-1100nm) 

wavelength absorption by molecules of gases in atmosphere. The 

experimental work of this thesis has been focused on  calibration of the 

system with laboratory experiments to detect  many atmospheric gases which 

are, nitrogen oxides (NO, NO2 and NO3 radical). 

 DOAS technique is based on the principle of optical absorption by 

molecule of gas over several meters to many kilometers length, DOAS gives 

average concentration measurement lead's to general pollution estimation at 

long distances, and consequently avoids local perturbation events in points 

measurements, the DOAS technique provides typical database by using the 

language of C# compared with results get it from experimental measurement 

obtainable  low cost test and best resulted. 
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