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Interfacing of peripherals 
Interfacing chips are needed to solve: 

1-the speed problem 

2-synchrouientis for data transfer between CPU & I/O device 

* The primary function of the μp is to accept data from input, read instructions from 

memory, process data according to the instructions and send result to output using logic 

circuit. (Hardware) and writing instructions (software) to enable the μp to comm. With 

these peripherals is called interacting. 

The μp communication with peripherals in either of two formats: asynchronous or 

synchronous. Data transfer between μp & its peripherals can take place under various 

conditions as shown below: 

An interrupt is an external or internal event that interrupts the μp to inform it that a 

device needs its service. 

 

Format of data transfer (synch & asynch) 

- Synchronous means at the same time, the TX & RX are synchrouitel with same clock 

- Asynchronous means at irregular interval, synch used for high speed data transfer 

while asynch. Used for low-speed data transfer  

 

Modes of data transfer 

μp receives or transmits binary data either parallel or serial, in parallel mode, the entire 

word (4bit, 8bit, 16bit ) is transferred at one. In serial mode data transferred one bit at a 

time over a single line between μp & peripheral. A word is converted into stream of 

eight bits this called to parallel conversion, then a stream of 8 bit is converted to parallel 

to serial conversion. 

 

Condition of data transfer 

The process of data transfer between μp & peripheral is controlled either by μp or by 

peripheral. 

 

μp controlled data transfer 

Most peripheral respond slowly in comparison with the speed of the μp, it can take five 

different conditions: 

1-Unconditional data transfer: in this form of data transfer, the μp assumes that the 

peripherals are always available, ex: data, and goes on to execute the next instruction. 

2-data transfer with polling: (status check): the μp is kept in a loop to check whether 

data are available, this is called polling, ex: to read from input keyboard, the μp can 

keep polling the port until is pressed. 

3-data transfer with interrupts: in this condition where the peripheral is ready to 

transfer data, it's sends an interrupt signal to the μp. The μp stops the executions of the 

program accept the data from the peripheral, and then returns to the program. 

4-data transfer with ready signal: when peripheral response time is slower than μp 

time, the ready signal can be used to add T-states, thus extending the execution time this 

processor provides sufficient time for the peripheral to complete the data transfer. 
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5-data transfer with handshake signals: in this data transfer signals are exchanged 

between the μp & peripheral prior to actual data transfer, these signals are called 

handshake signals. 

The function of these signals is to: 

1-ensure the readiness of peripheral. 

2-to synchronize the timing of data transfer for example: 

A / D is used as input device, the μp need to wait because of the slow conversion, at the 

end of conversion the A / D converter send a data ready (DR) also known as end 

acknowledge by sending a signal to the converter. 

 

Peripheral-controlled data transfer 

This is device-controlled I / O this type of data transfer is employed when the peripheral 

is much faster than the μp. 

For example in case of direct memory access (DMA) controller sends a hold signal to 

μp, the μp releases its data bus and the address bus to the DMA controller, and the data 

are transferred at high speed. 

 

I/O Operations 
 There are three basic ways to get data into or out of a memory. They are called 

programmed I/O, interrupt-driven I/O, and direct memory access (DMA). Although 

programmed I/O is the lowest of the three, it is used in simpler microprocessor systems 

where speed is unimportant. As the system becomes more complex, the interrupt 

approach becomes necessary. In the most advanced systems, DMA is needed because it 

is the only way to transfer large amounts of data in a short time. 

 

Programmed I/O 
 Programmed I/O uses instructions to get data into or out of a CPU. To correctly 

time the data transfers, programmed I/O relies either on clock timing (synchronous) or 

on handshaking (asynchronous).  

IN 8-bit port address: The contents of the input port designated in the operand (8-bit 

port address) are read and loaded into the accumulator. 

Out 8-bit port address: The contents of the accumulator are copied into the I/O port 

specified by the operand. 

 

 

 

 

Effect Function No. of 
Bytes 

Type Instruction No. 

None A=byte 

Ex. In 55; A=byte 

2 I/O IN 8-bit address 1. 

None Port address   ←   A 

Ex. Out 53; 53   ←    A 

2 I/O Out 8-bit address 2. 
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Programmed Input 

 The following figure shows a CPU connected to ports 10H, 11H, and 12H. Bit 6 

of port 10H is connected to the start input of the peripheral device, and bit 7 of port 11H 

to the status output. The device can send data to the CPU through input port 12H. 

 

                       Peripheral device 

 
 

 The basic idea is this. When the CPU is ready to input a word, it sends a high 

start bit to the peripheral device. When the device has the data ready for transfer, it 

sends a high status bit to port 11H. Until the status bit is high, the CPU waits. As soon 

as the status bit goes high, the CPU inputs one byte of data. 

 Suppose we want to input 256 bytes and store them at address 4000H through 

40FFH. Here is an example of programmed I/O written for an 8085 system: 

 

Label   Mnemonic       Comment 

   LXI H, 4000H   ; initialize HL pointer 

   MVI C, 00H    ; initialize counter 

LOOP:  MVI A, 40H   ; set start bit 

   OUT 10H    ; send high start bit 

WAIT:  IN 11H    ; get status bit 

   ANI 80H    ; isolate status bit 

   JZ WAIT    ; wait if device not ready 

   IN 12H    ; input data 

   MOV M, A    ; store data 

   INX H    ; update HL pointer 

   MVI A, 00H   ; reset start bit 

   OUT 10H    ; send low start bit 

   DCR C    ; count down 

   JNZ LOOP    ; go back if not finished 

   HLT 

 

 Notice in the previous figure that only one bit of port 10h is used; the other 7 bits 

are don't cares. Likewise in port 11h, only 1 bit is used. Ports 10h and 11h are necessary 

for the handshaking operations; port 12h is needed for the data transfer. 
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Programmed Output  

 The following figure shows a CPU connected to handshaking ports 10h and 11h. 

It is also connected to output port 12h. As before, bit 6 of port 10h is the start bit, and 

bit 7 of port 11h is the status bit. 

 

                       Peripheral device 

 
  

 Here is the procedure for output operations. When the CPU is ready, it will latch 

the data into port 12h. Then, the CPU sends a high start bit to indicate that valid data is 

waiting for transfer. After the peripheral device has loaded the data, it returns a high 

status bit. 

 Suppose we want to output 256 bytes from memory locations 4000h to 40ffh. 

Here is an example of programmed output: 

 

Label   Mnemonic        Comment 

   LXI H, 4000H   ; initialize HL pointer 

   MVI C, 00H    ; initialize counter 

LOOP:  MOV A, M    ; get next byte 

   OUT 12H    ; latch data into port 12h 

   MVI A, 40H   ; set start bit 

   OUT 10H    ; send high start bit 

WAIT:  IN 11H    ; get status bit 

   ANI 80H    ; isolate status bit 

   JZ WAIT    ; wait if device not ready 

   INX H    ; update HL pointer 

   MVI A, 00H   ; reset start bit 

   OUT 10H    ; send low start bit 

   DCR C    ; count down 

   JNZ LOOP    ; go back if not finished 

   HLT 

 Incidentally, programmed I/O is sometimes referred to as polled I/O. In the 

examples given, we have used software to control the I/O transfers of a single peripheral 

device. By modifying the software, we can poll several peripheral devices and transfer 

data when each is ready. 
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Interrupts 
 The interrupt I/O is a process of data transfer where-by an external device or a 

peripheral can inform the microprocessor that it is ready for communication. 

Some pins on the 8085 allow peripheral equipment to interrupt the main program 

for I/O operations. When an interrupt occurs, the 8085 completes the instruction it is 

currently executing. Then it branches to a subroutine that services the peripheral device. 

Upon completion of the service subroutine, the CPU returns to the main program. 

 This type of I/O operation is called interrupt-driven I/O. It is most efficient than 

programmed I/O because the CPU does not wait for a high status signal. Instead, the 

CPU can process data while the peripheral device is getting ready for an I/O transfer. 

 
Hardware Restarts 
 RST 0 to RST 7 are software restarts because they are instructions. Besides these 

software restarts, the 8085 has for hardware restarts designated TRAP (pin 6), RST 7.5 

(pin 7), RST 6.5 (pin 8) and RST 5.5 (pin 9). When any of these pins is active, the 

internal circuits of the 8085 produce a hardware call to a predetermined vector location. 

For example the RST 5.5 sends the program to 002ch. 

 A hardware call like this is know a vectored interrupt because the program 

branches to a vector location where the starting address of a service subroutine is stored. 

By connecting the hardware restart pins to peripheral devices, we can use interrupt-

driven I/O instead of programmed I/O. 

 
Interrupt-Driven I/O 
 The following figure illustrates the basic idea behind Interrupt-Driven I/O. When 

the peripheral device has a byte ready for data transfer, it sends a high bit to the RST 5.5 

input. After saving the contents of the program counter in the stack, the CPU branches 

to vector location 002ch. Here it finds the starting address of the service subroutine; this 

subroutine inputs a byte from the peripheral device and stores it in memory. 

 

 

 

 

 

 

 

 

  

 After the byte has been stored, the CPU sends a high ACKNOWLEDGE bit to 

the peripheral device. This tells the peripheral device to get the next byte ready for 

transfer. Then the CPU returns to the main program where data processing continues. In 

this way, the CPU can process data in the main program rather than waiting for the 

peripheral device to get ready. When the peripheral device has the next byte ready for 

transfer, it sends a high bit to the RST 5.5 input and the cycle repeats. 
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RST 5.5       Interrupt 

 

ACKNOWLEDGE 

 

 

  Data 
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 The advantage of interrupt-driven I/O is its efficiency. The CPU is no longer 

wasting 99.9 percent of its time waiting for the peripheral device to set up the next byte. 

The typical microcomputer uses interrupt-driven I/O because it has to process data 

while servicing a keyboard, a video display, and other peripheral devices. 

 

Interrupt Priorites 
 Besides the hardware restarts, the 8085 also has an INTR interrupt. The following 

table summarizes the 8085 interrupt. Notice that TRAP has the highest priority. RST 7.5 

next highest, and so on. If two or more interrupts are active at the same time, the 8085 

takes them in order to their priority level: TRAP is serviced first, then RST 7.5, and so 

forth. 

Interrupt Priority Vector Location 

TRAP          

RST 7.5 

RST 6.5 

RST 5.5 

INTR 

1 

2 

3 

4 

5 

0024H 

003CH 

0034H 

002CH 

NONE 

 

 
Maskable Interrupt  
The interrupt requests are classified in two categories: 

1. Maskable interrupt request can be ignored or delayed by the microprocessor and 

used in telephone 

2. Non - Mask able interrupt request the microprocessor respond immediately and used 

in smoke detector. 
 The RST 7.5, RST 6.5, and RST 5.5 interrupts are maskable, this means that they 

can be disabled by applying high M7.5, M6.5, and M5.5 signals. The TRAP is non-

maskable; once it goes high and stays high a TRAP interrupt appears at the final output. 

The signals I7.5, I6.5, and I5.5 are called pending interrupts. The signal IE is called the 

interrupt enable flag. 

 To activate the RST 5.5 interrupt, I5.5 must be high, M5.5 must be low, and IE 

must be high. 

 

Interrupt Instructions 
 Certain instructions are used with the interrupt. For instance, we might want to 

disable the interrupt system, or mask a particular interrupt, or examine pending 

interrupts, and so forth.  

Effect Function No. of 
Bytes 

Type Instruction No. 

None Disable Int. 1 Mach. control DI 1. 

None Enable Int. 1 Mach. control EI 2. 

None Read Int. Mask 1 Mach. control RIM 3. 

None Set Int. Mask 1 Mach. control SIM 4. 
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 EI and DI 
 The 8085 has two instructions that can enable or disable all inturrupts except the 

TRAP. The instruction: EI stands for enable interrupt. When executed, this instruction 

will produce a high EI bit. This produce a high IE output. 

 The instruction: DI stands for disable interrupts This rusults in a low IE. The low 

IE then disables all interrupts except TRAP. 

 Because the interrupts are automatically disabled by the any interrupt 

acknowledge bit, the programmer usually includes an EI as the next last instruction in 

the service subroutine. For instance, the last two instructions typically are: 

Subroutine: -----  

                       -----               I.S.R. 

                    EI      

                    RET 

 

 This subroutine cannot be interrupted (except by a TRAP) after the EI is 

exexuted, the processing returnes to the main program with the interrupt system 

enabled. 

 The programmer who wants some critical part of the main program to run 

uninterrupted can use a DI at the beginning of the segment to be protected and EI at the 

end: 

 

 

Main program: DI 

       …. 

       …. 

       EI 

 

 This protects the program between the DI and EI because the interrupt system is 

disabled. 

 

SIM 
 (Set Interrupt Mask) This is a multipurpose instruction and used to implement 

The 8085 interrupts 7.5, 6.5, 5.5, and serial data output. To use this instruction, you first 

load the accumulator as shown below: 

 

M5.5 M6.5 M7.5 MSE     
 Then by executing a SIM the accumulator will be transferred to the appropriate 

locations. 

 Here is an example. Suppose we want to mask (disable) the RST 7.5 and RST 6.5 

interrupts and unmask (enable) the RST 5.5 interrupt. Then we can use: 

 MVI A,0eh 

 SIM 
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 After the MVI is executed, you see a high MSE, high M7.5, and high M6.5; all 

other bits are low. The SIM then transfers these bits to the appropriate locations. This 

will preventing interrupts I7.5 and  I6.5 from arriving at the final ouputs. 

 
 
 
RIM 
 (Read Interrupt Mask) this is a multipurpose instruction used to read the status of 

interrupts 7.5, 6.5, 5.5 and read serial data input bit. When executed, it loads the 

accumulator. Bit 7 is the serial input data (SID), Bit 6, 5, and 4 are the pending 

interrupts. Bit 3 is the interrupt-enable bit IE. Bits 2,1, and 0 are the interrupt masks. 

Execution of a RIM allows the programmer to examine the status of the pendin 

interrupts, masks, and the like. This may be necessary following an interrupt service 

subroutine. 

Example: 

 The following figure shows a peripheral device connected to the RST 5.5 

interrupt. After the CPU recives a data word in port 12h, it can send a high 

ACKNOWLEDGE bit (bit 7 of port 11h) back to the peripheral device. 

 The starting address in the RST 5.5 vector location is F100h. Show a service 

subroutine that inputs data from the peripheral device and stores the data at 3000h 

 

 

 

 

 

 

 

 

Solution 

RST 5.5 Vectored Location 

Address machine code 

002c     c3 

002d     00 jmp to I.S.R (vectored location of RST 5.5 contain 

002e     f1      the start address of interrpt service routine) 

 

Main Program 

Address Mnemonic 

2000h  MVI A,0eh 

2002h  SIM 

2003h  LXI SP,0ff00h ; set start address of the stack 

  ---- 

  ---- 

      aa:  jmp aa 

 

 

 

CPU 

 

 

Peripheral 

Device 

  RST 5.5            Interrupt 

 

  Bit 7, Port 11h  ACKNOWLEDGE 

 

 

 Port 12h         Data 
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Or Main Program 

Address Mnemonic 

2000h  MVI A,0eh 

2002h  SIM 

2003h  LXI SP,0ff00h ; set start address of the stack 

      aa: ---- 

  ---- in special case HLT 

  ---- 

            jmp aa  

Interrupt Service Routine (I.S.R) 

Address Mnemonic  Comment 

F100h PUSH PSW  ; save accumulator and flags 

F101h PUSH H  ; save HL contents 

F102h IN 12H  ; Input data from device 

F104h LXI H,3000h ; set pointer 

F107h MOV M,A  ; store data 

F108h MVI A,80H  ; set ACKNOWLEDGE bit 

F10Ah OUT 11H  ; Acknowledge data arrival 

F10Ch POP H  ; restore HL contents 

F10Dh POP PSW  ; restore accumulator and flags 

F10Eh EI   ; enable interrupts 

F10Fh RET   ; return  

 

 When the peripheral device is ready for data tranfer, it sends a high bit to the RST 

5.5 input. After the 8085 recognizes this interrupt, it branches to vector location 002ch. 

Here it finds a jmp f100h. The jump takes the program to the starting address of the 

service subroutine. 

 The service subroutine usually destroys the contents of the accumulator and HL 

register. For this reason, the subroutine starts with a PUSH PSW and a PUSH H; this 

saves the accumulator contents, flags, and HL contents in the stack. 

 Next, the IN 12h inputs a data word from port 12h. After the HL pointer is set to 

3000h, the data is stored at location 3000h. The next two instructions send a high 

ACKNOWLEDGE bit to the peripheral device. 

 The POP H and POP PSW restore the contents of the HL register, accumulator, 

and flag register. Because the stack operates as first-in last-out memory, we pop in the 

reserve order that we pushed. 

 Finally comes the EI to enable the interrupts and the RET to get us back to the 

main program. 

 BY modifiying this subroutine, we can store bytes in successive memory 

locations. For instance, using an INX H and some other instructions, we can update the 

HL pointer each time the subroutine is called. In this way, the incoming data words will 

be stored at 3000h, 3001h, 3002h, and so on. 
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Direct-Memory Acsees  
 A floppy disk is a thin plastic disk about 8 inches in diameter, coated with 

magnetic oxide. A disk drive is a peripheral device that can either read or write data on 

the disk, which can store a half million or more bytes. The only practical way to transfer 

data to and from the disk is with direct memory access (DMA). The 8085 can turn over 

control of its buses to a DMA controller for high-speed I/O transfers. In this way, large 

amounts of data can be transferred in a relatively short time. 
 
Accumulator in the middle 
 The details of DMA transfer are too complicated to go into here, but we can 

discuss the basic idea. The IN instruction is the usual way to input data from peripheral 

devices. The accumulator is involved because it receives the input data. Similarly, the 

OUT instruction transfers data from accumulator to output devices. In either case, the 

accumulator serves as go-between. 

 On way to transfer data from the memory to peripheral devices is to use move 

and I/O instructions. For instance, to move 256 bytes from memory to an output device, 

we can use a loop that includes MOV A, M and OUT instructions. This approach will 

work, but it is too slow when large amounts of data are involved. 
 
The problem 
 The foregoing approach is slow for two reasons. First, the accumulator acts as a 

halfway station in each transfer of data from memory to I/O, or vice versa. Second, the 

8085 is micro programmed, which means that the microinstructions have to be read 

from a control ROM. The access time of this control ROM slows things down.  
 
Basic Idea 
 DMA data transfers are faster because the accumulator is eliminated as a halfway 

station; the data goes directly from the memory to the peripheral device or vice versa. 

Also, the DMA controller has hardwired control instead of micro programming. This 

eliminates the access time of the control ROM. 

 The HOLD and HLDA signals are used in DMA operations. In the following 

figure, when the DMA controller is ready to take over control, it sends a high HOLD 

signal to the 8085. The 8085 then three-states (floats) its address, data, and control 

buses. It also sends a high HLDA (hold acknowledge) to the DMA controller, indicating 

that it has turned over control. The DMA controller carries out the data transfers at a 

high speed and then returns control to the 8085 by sending back a low HOLD signal. 
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Error Detection 

 
 

 
 
 
 
 
Class Work 
1. Detect the validity of received message (11 bytes read via port 72) after checking the 

availability of data via port 73 (status bit: 3). the validity is checked by calculate its 

checksum (Xor all received bytes) if the message is valid (checksum=0) then send 

Ack: 55 via port 74 otherwise send Nack: 15 via the same port. (Save the message in 

memory started at address 2080).    
Address HexCode Label Opcode Operands Comments 

2000 

2001 

2002 

 

80 

20 

 LXI  H,2080 ; HL=2080 

2003 

2004 

2005 

 

0B 

00 

 LXI B,00B ; BC=00B 

2006 

2007 

 

73 

BYTE: IN 73 ; A←PORT 73 

2008 

2009 

 

08 

 ANI 8 ; A=A AND 8 

200A 

200B 

200C 

 

06 

20 

 JZ BYTE ; IF Z=1 then PC=2006 

200D 

200E 

 

72 

 IN 72 ; A←PORT 72 

200F   MOV M,A ; MHL=A 

2010   INX H ; HL=HL+1 

2011   XRA B ; A=A XOR B 

2012   MOV B,A ; B=A 

2013   DCR C ; C=C-1 

2014 

2015 

2016 

 

06 

20 

 JNZ BYTE ; IF Z=0 then PC=2006 

2017   MOV A,B ; A=B 

2018   ANA A ; A=A AND A 

2019 

201A 

201B 

 

21 

20 

 JZ ACK ; IF Z=1 then PC=2021 

201C 

201D 

 

15 

 MVI A,15 ; A=15 

201E 

201F 

 

74 

 OUT 74 ; PORT 74←A 

2020   RST1  ; END 

2021 

2022 

 

55 

ACK: MVI A,55 ; A=55 

2023 

2024 

 

74 

 OUT 74 ; PORT 74←A 

2025   RST1  ; END 

Message Send         Received Message   
 

XOR                                                 

                                                          XOR  
10 bytes          11 bytes  

 
      Xor Byte               

                                         (Checksum) Result=0 
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2. Update the previous program by using I.S.R. (Request Line 6.5) to receive the message and set 

register D to 1 when calculate the checksum, the main program detect if register D=1 then check 

the value of checksum if it is 1 then send ACK otherwise send NACK.   

Address HexCode Label Opcode Operands Comments 
2000 

2001 

2002 

 

50 

20 

 LXI  SP,2050 ; SP=2050 

2003 

2004 

2005 

 

0B 

00 

 LXI B,00B ; BC=00B 

2006 

2007 

 

00 

 MVI D,0 ; D=0 

2008 

2009 

200A 

 

80 

20 

 LXI H,2080 ; HL=2080 

200B 

200C 

 

0D 

 MVI A,0D ; A=0D 

200D   SIM  ; SIM 
200E  DINT: MOV A,D ; A=D 
200F   ANA A ; A= A AND A 
2010 

2011 

2012 

 

0E 

20 

 JZ DINT ; IF Z=1 then PC=200E 

2013 

2014 

 

0F 

 MVI A,0F ; A=0F 

2015   SIM  ; SIM 
2016   MOV A,B ; A=B 
2017   ANA A ; A= A AND A 
2018 

2019 

201A 

 

20 

20 

 JZ ACK ; IF Z=1 then PC=2020 

201B 

201C 

 

15 

 MVI A,15 ; A=15 

201D 

201E 

 

74 

 OUT 74 ; PORT 74 ←A 

201F   RST1  ; END 
2020 

2021 

 

55 

ACK: MVI A,55 ; A=55 

2022 

2023 

 

74 

 OUT 74 ; PORT 74 ←A 

2024   RST1  ; END 
2025 

2026 

 

72 

CHKINT: IN 72 ; A←PORT 72 

2027   MOV M,A ; MHL=A 
2028   INX H ; HL=HL+1 
2029   XRA B ; A=A XOR B 
202A   MOV B,A ; B=A 
202B   DCR C ; C=C-1 
202C 

202D 

202E 

 

31 

20 

 JNZ EXIT ; IF Z=0 then PC=2031 

202F 

2030 

 

01 

 MVI D,1 ; D=1 

2031  EXIT: EI  ; EI 
2032   RET  ; PC=ADDRESS AFTER INT. HAPPEND 
RST 6.5 

0034: C3 

0035: 25                   JMP CHKINT 

0036: 20 


