
Microprocessor (Lecture -11-)

 58

Interfacing of peripherals
Interfacing chips are needed to solve:

1-the speed problem

2-synchrouientis for data transfer between CPU & I/O device

* The primary function of the μp is to accept data from input, read instructions from

memory, process data according to the instructions and send result to output using logic

circuit. (Hardware) and writing instructions (software) to enable the μp to comm. With

these peripherals is called interacting.

The μp communication with peripherals in either of two formats: asynchronous or

synchronous. Data transfer between μp & its peripherals can take place under various

conditions as shown below:

An interrupt is an external or internal event that interrupts the μp to inform it that a

device needs its service.

Format of data transfer (synch & asynch)

- Synchronous means at the same time, the TX & RX are synchrouitel with same clock

- Asynchronous means at irregular interval, synch used for high speed data transfer

while asynch. Used for low-speed data transfer

Modes of data transfer

μp receives or transmits binary data either parallel or serial, in parallel mode, the entire

word (4bit, 8bit, 16bit) is transferred at one. In serial mode data transferred one bit at a

time over a single line between μp & peripheral. A word is converted into stream of

eight bits this called to parallel conversion, then a stream of 8 bit is converted to parallel

to serial conversion.

Condition of data transfer

The process of data transfer between μp & peripheral is controlled either by μp or by

peripheral.

μp controlled data transfer

Most peripheral respond slowly in comparison with the speed of the μp, it can take five

different conditions:

1-Unconditional data transfer: in this form of data transfer, the μp assumes that the

peripherals are always available, ex: data, and goes on to execute the next instruction.

2-data transfer with polling: (status check): the μp is kept in a loop to check whether

data are available, this is called polling, ex: to read from input keyboard, the μp can

keep polling the port until is pressed.

3-data transfer with interrupts: in this condition where the peripheral is ready to

transfer data, it's sends an interrupt signal to the μp. The μp stops the executions of the

program accept the data from the peripheral, and then returns to the program.

4-data transfer with ready signal: when peripheral response time is slower than μp

time, the ready signal can be used to add T-states, thus extending the execution time this

processor provides sufficient time for the peripheral to complete the data transfer.

Microprocessor (Lecture -11-)

 59

5-data transfer with handshake signals: in this data transfer signals are exchanged

between the μp & peripheral prior to actual data transfer, these signals are called

handshake signals.

The function of these signals is to:

1-ensure the readiness of peripheral.

2-to synchronize the timing of data transfer for example:

A / D is used as input device, the μp need to wait because of the slow conversion, at the

end of conversion the A / D converter send a data ready (DR) also known as end

acknowledge by sending a signal to the converter.

Peripheral-controlled data transfer

This is device-controlled I / O this type of data transfer is employed when the peripheral

is much faster than the μp.

For example in case of direct memory access (DMA) controller sends a hold signal to

μp, the μp releases its data bus and the address bus to the DMA controller, and the data

are transferred at high speed.

I/O Operations
 There are three basic ways to get data into or out of a memory. They are called

programmed I/O, interrupt-driven I/O, and direct memory access (DMA). Although

programmed I/O is the lowest of the three, it is used in simpler microprocessor systems

where speed is unimportant. As the system becomes more complex, the interrupt

approach becomes necessary. In the most advanced systems, DMA is needed because it

is the only way to transfer large amounts of data in a short time.

Programmed I/O
 Programmed I/O uses instructions to get data into or out of a CPU. To correctly

time the data transfers, programmed I/O relies either on clock timing (synchronous) or

on handshaking (asynchronous).

IN 8-bit port address: The contents of the input port designated in the operand (8-bit

port address) are read and loaded into the accumulator.

Out 8-bit port address: The contents of the accumulator are copied into the I/O port

specified by the operand.

Effect Function No. of
Bytes

Type Instruction No.

None A=byte

Ex. In 55; A=byte

2 I/O IN 8-bit address 1.

None Port address ← A

Ex. Out 53; 53 ← A

2 I/O Out 8-bit address 2.

Microprocessor (Lecture -11-)

 60

Programmed Input

 The following figure shows a CPU connected to ports 10H, 11H, and 12H. Bit 6

of port 10H is connected to the start input of the peripheral device, and bit 7 of port 11H

to the status output. The device can send data to the CPU through input port 12H.

 Peripheral device

 The basic idea is this. When the CPU is ready to input a word, it sends a high

start bit to the peripheral device. When the device has the data ready for transfer, it

sends a high status bit to port 11H. Until the status bit is high, the CPU waits. As soon

as the status bit goes high, the CPU inputs one byte of data.

 Suppose we want to input 256 bytes and store them at address 4000H through

40FFH. Here is an example of programmed I/O written for an 8085 system:

Label Mnemonic Comment

 LXI H, 4000H ; initialize HL pointer

 MVI C, 00H ; initialize counter

LOOP: MVI A, 40H ; set start bit

 OUT 10H ; send high start bit

WAIT: IN 11H ; get status bit

 ANI 80H ; isolate status bit

 JZ WAIT ; wait if device not ready

 IN 12H ; input data

 MOV M, A ; store data

 INX H ; update HL pointer

 MVI A, 00H ; reset start bit

 OUT 10H ; send low start bit

 DCR C ; count down

 JNZ LOOP ; go back if not finished

 HLT

 Notice in the previous figure that only one bit of port 10h is used; the other 7 bits

are don't cares. Likewise in port 11h, only 1 bit is used. Ports 10h and 11h are necessary

for the handshaking operations; port 12h is needed for the data transfer.

CPU

Port 10H

Port 11H

Port 12H

Start

Status

Data

 Bit 6

 8

 8 Bit 7

 8 8

Microprocessor (Lecture -11-)

 61

Programmed Output

 The following figure shows a CPU connected to handshaking ports 10h and 11h.

It is also connected to output port 12h. As before, bit 6 of port 10h is the start bit, and

bit 7 of port 11h is the status bit.

 Peripheral device

 Here is the procedure for output operations. When the CPU is ready, it will latch

the data into port 12h. Then, the CPU sends a high start bit to indicate that valid data is

waiting for transfer. After the peripheral device has loaded the data, it returns a high

status bit.

 Suppose we want to output 256 bytes from memory locations 4000h to 40ffh.

Here is an example of programmed output:

Label Mnemonic Comment

 LXI H, 4000H ; initialize HL pointer

 MVI C, 00H ; initialize counter

LOOP: MOV A, M ; get next byte

 OUT 12H ; latch data into port 12h

 MVI A, 40H ; set start bit

 OUT 10H ; send high start bit

WAIT: IN 11H ; get status bit

 ANI 80H ; isolate status bit

 JZ WAIT ; wait if device not ready

 INX H ; update HL pointer

 MVI A, 00H ; reset start bit

 OUT 10H ; send low start bit

 DCR C ; count down

 JNZ LOOP ; go back if not finished

 HLT

 Incidentally, programmed I/O is sometimes referred to as polled I/O. In the

examples given, we have used software to control the I/O transfers of a single peripheral

device. By modifying the software, we can poll several peripheral devices and transfer

data when each is ready.

CPU

Port 10H

Port 11H

Port 12H

Start

Status

Data

 Bit 6

 8

 8 Bit 7

 8 8

Microprocessor (Lecture -11-)

 62

Interrupts
 The interrupt I/O is a process of data transfer where-by an external device or a

peripheral can inform the microprocessor that it is ready for communication.

Some pins on the 8085 allow peripheral equipment to interrupt the main program

for I/O operations. When an interrupt occurs, the 8085 completes the instruction it is

currently executing. Then it branches to a subroutine that services the peripheral device.

Upon completion of the service subroutine, the CPU returns to the main program.

 This type of I/O operation is called interrupt-driven I/O. It is most efficient than

programmed I/O because the CPU does not wait for a high status signal. Instead, the

CPU can process data while the peripheral device is getting ready for an I/O transfer.

Hardware Restarts
 RST 0 to RST 7 are software restarts because they are instructions. Besides these

software restarts, the 8085 has for hardware restarts designated TRAP (pin 6), RST 7.5

(pin 7), RST 6.5 (pin 8) and RST 5.5 (pin 9). When any of these pins is active, the

internal circuits of the 8085 produce a hardware call to a predetermined vector location.

For example the RST 5.5 sends the program to 002ch.

 A hardware call like this is know a vectored interrupt because the program

branches to a vector location where the starting address of a service subroutine is stored.

By connecting the hardware restart pins to peripheral devices, we can use interrupt-

driven I/O instead of programmed I/O.

Interrupt-Driven I/O
 The following figure illustrates the basic idea behind Interrupt-Driven I/O. When

the peripheral device has a byte ready for data transfer, it sends a high bit to the RST 5.5

input. After saving the contents of the program counter in the stack, the CPU branches

to vector location 002ch. Here it finds the starting address of the service subroutine; this

subroutine inputs a byte from the peripheral device and stores it in memory.

 After the byte has been stored, the CPU sends a high ACKNOWLEDGE bit to

the peripheral device. This tells the peripheral device to get the next byte ready for

transfer. Then the CPU returns to the main program where data processing continues. In

this way, the CPU can process data in the main program rather than waiting for the

peripheral device to get ready. When the peripheral device has the next byte ready for

transfer, it sends a high bit to the RST 5.5 input and the cycle repeats.

CPU

Peripheral

Device

RST 5.5 Interrupt

ACKNOWLEDGE

 Data

Microprocessor (Lecture -11-)

 63

 The advantage of interrupt-driven I/O is its efficiency. The CPU is no longer

wasting 99.9 percent of its time waiting for the peripheral device to set up the next byte.

The typical microcomputer uses interrupt-driven I/O because it has to process data

while servicing a keyboard, a video display, and other peripheral devices.

Interrupt Priorites
 Besides the hardware restarts, the 8085 also has an INTR interrupt. The following

table summarizes the 8085 interrupt. Notice that TRAP has the highest priority. RST 7.5

next highest, and so on. If two or more interrupts are active at the same time, the 8085

takes them in order to their priority level: TRAP is serviced first, then RST 7.5, and so

forth.

Interrupt Priority Vector Location

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

1

2

3

4

5

0024H

003CH

0034H

002CH

NONE

Maskable Interrupt
The interrupt requests are classified in two categories:

1. Maskable interrupt request can be ignored or delayed by the microprocessor and

used in telephone

2. Non - Mask able interrupt request the microprocessor respond immediately and used

in smoke detector.
 The RST 7.5, RST 6.5, and RST 5.5 interrupts are maskable, this means that they

can be disabled by applying high M7.5, M6.5, and M5.5 signals. The TRAP is non-

maskable; once it goes high and stays high a TRAP interrupt appears at the final output.

The signals I7.5, I6.5, and I5.5 are called pending interrupts. The signal IE is called the

interrupt enable flag.

 To activate the RST 5.5 interrupt, I5.5 must be high, M5.5 must be low, and IE

must be high.

Interrupt Instructions
 Certain instructions are used with the interrupt. For instance, we might want to

disable the interrupt system, or mask a particular interrupt, or examine pending

interrupts, and so forth.

Effect Function No. of
Bytes

Type Instruction No.

None Disable Int. 1 Mach. control DI 1.

None Enable Int. 1 Mach. control EI 2.

None Read Int. Mask 1 Mach. control RIM 3.

None Set Int. Mask 1 Mach. control SIM 4.

Microprocessor (Lecture -11-)

 64

 EI and DI
 The 8085 has two instructions that can enable or disable all inturrupts except the

TRAP. The instruction: EI stands for enable interrupt. When executed, this instruction

will produce a high EI bit. This produce a high IE output.

 The instruction: DI stands for disable interrupts This rusults in a low IE. The low

IE then disables all interrupts except TRAP.

 Because the interrupts are automatically disabled by the any interrupt

acknowledge bit, the programmer usually includes an EI as the next last instruction in

the service subroutine. For instance, the last two instructions typically are:

Subroutine: -----

 ----- I.S.R.

 EI

 RET

 This subroutine cannot be interrupted (except by a TRAP) after the EI is

exexuted, the processing returnes to the main program with the interrupt system

enabled.

 The programmer who wants some critical part of the main program to run

uninterrupted can use a DI at the beginning of the segment to be protected and EI at the

end:

Main program: DI

 ….

 ….

 EI

 This protects the program between the DI and EI because the interrupt system is

disabled.

SIM
 (Set Interrupt Mask) This is a multipurpose instruction and used to implement

The 8085 interrupts 7.5, 6.5, 5.5, and serial data output. To use this instruction, you first

load the accumulator as shown below:

M5.5 M6.5 M7.5 MSE
 Then by executing a SIM the accumulator will be transferred to the appropriate

locations.

 Here is an example. Suppose we want to mask (disable) the RST 7.5 and RST 6.5

interrupts and unmask (enable) the RST 5.5 interrupt. Then we can use:

 MVI A,0eh

 SIM

Microprocessor (Lecture -11-)

 65

 After the MVI is executed, you see a high MSE, high M7.5, and high M6.5; all

other bits are low. The SIM then transfers these bits to the appropriate locations. This

will preventing interrupts I7.5 and I6.5 from arriving at the final ouputs.

RIM
 (Read Interrupt Mask) this is a multipurpose instruction used to read the status of

interrupts 7.5, 6.5, 5.5 and read serial data input bit. When executed, it loads the

accumulator. Bit 7 is the serial input data (SID), Bit 6, 5, and 4 are the pending

interrupts. Bit 3 is the interrupt-enable bit IE. Bits 2,1, and 0 are the interrupt masks.

Execution of a RIM allows the programmer to examine the status of the pendin

interrupts, masks, and the like. This may be necessary following an interrupt service

subroutine.

Example:

 The following figure shows a peripheral device connected to the RST 5.5

interrupt. After the CPU recives a data word in port 12h, it can send a high

ACKNOWLEDGE bit (bit 7 of port 11h) back to the peripheral device.

 The starting address in the RST 5.5 vector location is F100h. Show a service

subroutine that inputs data from the peripheral device and stores the data at 3000h

Solution

RST 5.5 Vectored Location

Address machine code

002c c3

002d 00 jmp to I.S.R (vectored location of RST 5.5 contain

002e f1 the start address of interrpt service routine)

Main Program

Address Mnemonic

2000h MVI A,0eh

2002h SIM

2003h LXI SP,0ff00h ; set start address of the stack

 aa: jmp aa

CPU

Peripheral

Device

 RST 5.5 Interrupt

 Bit 7, Port 11h ACKNOWLEDGE

 Port 12h Data

Microprocessor (Lecture -11-)

 66

Or Main Program

Address Mnemonic

2000h MVI A,0eh

2002h SIM

2003h LXI SP,0ff00h ; set start address of the stack

 aa: ----

 ---- in special case HLT

 jmp aa

Interrupt Service Routine (I.S.R)

Address Mnemonic Comment

F100h PUSH PSW ; save accumulator and flags

F101h PUSH H ; save HL contents

F102h IN 12H ; Input data from device

F104h LXI H,3000h ; set pointer

F107h MOV M,A ; store data

F108h MVI A,80H ; set ACKNOWLEDGE bit

F10Ah OUT 11H ; Acknowledge data arrival

F10Ch POP H ; restore HL contents

F10Dh POP PSW ; restore accumulator and flags

F10Eh EI ; enable interrupts

F10Fh RET ; return

 When the peripheral device is ready for data tranfer, it sends a high bit to the RST

5.5 input. After the 8085 recognizes this interrupt, it branches to vector location 002ch.

Here it finds a jmp f100h. The jump takes the program to the starting address of the

service subroutine.

 The service subroutine usually destroys the contents of the accumulator and HL

register. For this reason, the subroutine starts with a PUSH PSW and a PUSH H; this

saves the accumulator contents, flags, and HL contents in the stack.

 Next, the IN 12h inputs a data word from port 12h. After the HL pointer is set to

3000h, the data is stored at location 3000h. The next two instructions send a high

ACKNOWLEDGE bit to the peripheral device.

 The POP H and POP PSW restore the contents of the HL register, accumulator,

and flag register. Because the stack operates as first-in last-out memory, we pop in the

reserve order that we pushed.

 Finally comes the EI to enable the interrupts and the RET to get us back to the

main program.

 BY modifiying this subroutine, we can store bytes in successive memory

locations. For instance, using an INX H and some other instructions, we can update the

HL pointer each time the subroutine is called. In this way, the incoming data words will

be stored at 3000h, 3001h, 3002h, and so on.

Microprocessor (Lecture -11-)

 67

Direct-Memory Acsees
 A floppy disk is a thin plastic disk about 8 inches in diameter, coated with

magnetic oxide. A disk drive is a peripheral device that can either read or write data on

the disk, which can store a half million or more bytes. The only practical way to transfer

data to and from the disk is with direct memory access (DMA). The 8085 can turn over

control of its buses to a DMA controller for high-speed I/O transfers. In this way, large

amounts of data can be transferred in a relatively short time.

Accumulator in the middle
 The details of DMA transfer are too complicated to go into here, but we can

discuss the basic idea. The IN instruction is the usual way to input data from peripheral

devices. The accumulator is involved because it receives the input data. Similarly, the

OUT instruction transfers data from accumulator to output devices. In either case, the

accumulator serves as go-between.

 On way to transfer data from the memory to peripheral devices is to use move

and I/O instructions. For instance, to move 256 bytes from memory to an output device,

we can use a loop that includes MOV A, M and OUT instructions. This approach will

work, but it is too slow when large amounts of data are involved.

The problem
 The foregoing approach is slow for two reasons. First, the accumulator acts as a

halfway station in each transfer of data from memory to I/O, or vice versa. Second, the

8085 is micro programmed, which means that the microinstructions have to be read

from a control ROM. The access time of this control ROM slows things down.

Basic Idea
 DMA data transfers are faster because the accumulator is eliminated as a halfway

station; the data goes directly from the memory to the peripheral device or vice versa.

Also, the DMA controller has hardwired control instead of micro programming. This

eliminates the access time of the control ROM.

 The HOLD and HLDA signals are used in DMA operations. In the following

figure, when the DMA controller is ready to take over control, it sends a high HOLD

signal to the 8085. The 8085 then three-states (floats) its address, data, and control

buses. It also sends a high HLDA (hold acknowledge) to the DMA controller, indicating

that it has turned over control. The DMA controller carries out the data transfers at a

high speed and then returns control to the 8085 by sending back a low HOLD signal.

Memory

DMA

Controller

8085
HOLD

HLDA

 All buses

Microprocessor (Lecture -11-)

 68

Error Detection

Class Work
1. Detect the validity of received message (11 bytes read via port 72) after checking the

availability of data via port 73 (status bit: 3). the validity is checked by calculate its

checksum (Xor all received bytes) if the message is valid (checksum=0) then send

Ack: 55 via port 74 otherwise send Nack: 15 via the same port. (Save the message in

memory started at address 2080).
Address HexCode Label Opcode Operands Comments

2000

2001

2002

80

20

 LXI H,2080 ; HL=2080

2003

2004

2005

0B

00

 LXI B,00B ; BC=00B

2006

2007

73

BYTE: IN 73 ; A←PORT 73

2008

2009

08

 ANI 8 ; A=A AND 8

200A

200B

200C

06

20

 JZ BYTE ; IF Z=1 then PC=2006

200D

200E

72

 IN 72 ; A←PORT 72

200F MOV M,A ; MHL=A

2010 INX H ; HL=HL+1

2011 XRA B ; A=A XOR B

2012 MOV B,A ; B=A

2013 DCR C ; C=C-1

2014

2015

2016

06

20

 JNZ BYTE ; IF Z=0 then PC=2006

2017 MOV A,B ; A=B

2018 ANA A ; A=A AND A

2019

201A

201B

21

20

 JZ ACK ; IF Z=1 then PC=2021

201C

201D

15

 MVI A,15 ; A=15

201E

201F

74

 OUT 74 ; PORT 74←A

2020 RST1 ; END

2021

2022

55

ACK: MVI A,55 ; A=55

2023

2024

74

 OUT 74 ; PORT 74←A

2025 RST1 ; END

Message Send Received Message

XOR

 XOR
10 bytes 11 bytes

 Xor Byte

 (Checksum) Result=0

Microprocessor (Lecture -11-)

 69

2. Update the previous program by using I.S.R. (Request Line 6.5) to receive the message and set

register D to 1 when calculate the checksum, the main program detect if register D=1 then check

the value of checksum if it is 1 then send ACK otherwise send NACK.

Address HexCode Label Opcode Operands Comments
2000

2001

2002

50

20

 LXI SP,2050 ; SP=2050

2003

2004

2005

0B

00

 LXI B,00B ; BC=00B

2006

2007

00

 MVI D,0 ; D=0

2008

2009

200A

80

20

 LXI H,2080 ; HL=2080

200B

200C

0D

 MVI A,0D ; A=0D

200D SIM ; SIM
200E DINT: MOV A,D ; A=D
200F ANA A ; A= A AND A
2010

2011

2012

0E

20

 JZ DINT ; IF Z=1 then PC=200E

2013

2014

0F

 MVI A,0F ; A=0F

2015 SIM ; SIM
2016 MOV A,B ; A=B
2017 ANA A ; A= A AND A
2018

2019

201A

20

20

 JZ ACK ; IF Z=1 then PC=2020

201B

201C

15

 MVI A,15 ; A=15

201D

201E

74

 OUT 74 ; PORT 74 ←A

201F RST1 ; END
2020

2021

55

ACK: MVI A,55 ; A=55

2022

2023

74

 OUT 74 ; PORT 74 ←A

2024 RST1 ; END
2025

2026

72

CHKINT: IN 72 ; A←PORT 72

2027 MOV M,A ; MHL=A
2028 INX H ; HL=HL+1
2029 XRA B ; A=A XOR B
202A MOV B,A ; B=A
202B DCR C ; C=C-1
202C

202D

202E

31

20

 JNZ EXIT ; IF Z=0 then PC=2031

202F

2030

01

 MVI D,1 ; D=1

2031 EXIT: EI ; EI
2032 RET ; PC=ADDRESS AFTER INT. HAPPEND
RST 6.5

0034: C3

0035: 25 JMP CHKINT

0036: 20

