Perpendicular (Orthogonal) Vectors

DEFINITION Vectors **u** and **v** are **orthogonal** (or **perpendicular**) if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

EXAMPLE 4 To determine if two vectors are orthogonal, calculate their dot product. (a) $\mathbf{u} = \langle 3, -2 \rangle$ and $\mathbf{v} = \langle 4, 6 \rangle$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3)(4) + (-2)(6) = 0$. (b) $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{j} + 4\mathbf{k}$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3)(0) + (-2)(2) + (1)(4) = 0$.

(c) 0 is orthogonal to every vector u since

$$\begin{aligned} \mathbf{0} \cdot \mathbf{u} &= \langle 0, 0, 0 \rangle \cdot \langle u_1, u_2, u_3 \rangle \\ &= (0)(u_1) + (0)(u_2) + (0)(u_3) \\ &= 0. \end{aligned}$$

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers (scalars).

Properties of the Dot ProductIf u, v, and w are any vectors and c is a scalar, then1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ 2. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$ 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 4. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$ 5. $\mathbf{0} \cdot \mathbf{u} = 0$.

The vector projection of **u** onto **v** is the vector

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}.$$
 (1)

The scalar component of u in the direction of v is the scalar

$$|\mathbf{u}| \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} = \mathbf{u} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}.$$
 (2)

Note that both the vector projection of **u** onto **v** and the scalar component of **u** onto **v** depend only on the direction of the vector **v** and not its length (because we dot **u** with $\mathbf{v}/|\mathbf{v}|$, which is the direction of **v**).

EXAMPLE 5 Find the vector projection of $\mathbf{u} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ onto $\mathbf{v} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and the scalar component of \mathbf{u} in the direction of \mathbf{v} .

Solution We find proj_v u from Equation (1):

$$proj_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{6 - 6 - 4}{1 + 4 + 4} (\mathbf{i} - 2\mathbf{j} - 2\mathbf{k})$$
$$= -\frac{4}{9} (\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}) = -\frac{4}{9} \mathbf{i} + \frac{8}{9} \mathbf{j} + \frac{8}{9} \mathbf{k}.$$

We find the scalar component of \mathbf{u} in the direction of \mathbf{v} from Equation (2):

$$|\mathbf{u}| \cos \theta = \mathbf{u} \cdot \frac{\mathbf{v}}{|\mathbf{v}|} = (6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) \cdot \left(\frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}\right)$$

= 2 - 2 - $\frac{4}{3} = -\frac{4}{3}$.

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in the next example.

Dot Product and Projections

In Exercises 1-8, find

- a. $v \cdot u$, |v|, |u|
- b. the cosine of the angle between \boldsymbol{v} and \boldsymbol{u}
- \boldsymbol{c}_{*} the scalar component of \boldsymbol{u} in the direction of \boldsymbol{v}

d. the vector projv u.
1.
$$\mathbf{v} = 2\mathbf{i} - 4\mathbf{j} + \sqrt{5}\mathbf{k}$$
, $\mathbf{u} = -2\mathbf{i} + 4\mathbf{j} - \sqrt{5}\mathbf{k}$
2. $\mathbf{v} = (3/5)\mathbf{i} + (4/5)\mathbf{k}$, $\mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$
3. $\mathbf{v} = 10\mathbf{i} + 11\mathbf{j} - 2\mathbf{k}$, $\mathbf{u} = 3\mathbf{j} + 4\mathbf{k}$
4. $\mathbf{v} = 2\mathbf{i} + 10\mathbf{j} - 11\mathbf{k}$, $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$
5. $\mathbf{v} = 5\mathbf{j} - 3\mathbf{k}$, $\mathbf{u} = \mathbf{i} + \mathbf{j} + \mathbf{k}$
6. $\mathbf{v} = -\mathbf{i} + \mathbf{j}$, $\mathbf{u} = \sqrt{2}\mathbf{i} + \sqrt{3}\mathbf{j} + 2\mathbf{k}$
7. $\mathbf{v} = 5\mathbf{i} + \mathbf{j}$, $\mathbf{u} = 2\mathbf{i} + \sqrt{17}\mathbf{j}$
8. $\mathbf{v} = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}} \right\rangle$, $\mathbf{u} = \left\langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{3}} \right\rangle$

Angle Between Vectors

Find the angles between the vectors in Exercises 9–12 to the nearest hundredth of a radian.

9. u = 2i + j, v = i + 2j - k

- 10. u = 2i 2j + k, v = 3i + 4k
- **11.** $\mathbf{u} = \sqrt{3}\mathbf{i} 7\mathbf{j}, \quad \mathbf{v} = \sqrt{3}\mathbf{i} + \mathbf{j} 2\mathbf{k}$
- 12. $u = i + \sqrt{2}j \sqrt{2}k$, v = -i + j + k
- 13. Triangle Find the measures of the angles of the triangle whose vertices are A = (-1, 0), B = (2, 1), and C = (1, -2).
- 14. Rectangle Find the measures of the angles between the diagonals of the rectangle whose vertices are A = (1, 0), B = (0, 3), C = (3, 4), and D = (4, 1).
- 15. Direction angles and direction cosines The direction angles α, β, and γ of a vector v = ai + bj + ck are defined as follows: α is the angle between v and the positive x-axis (0 ≤ α ≤ π) β is the angle between v and the positive y-axis (0 ≤ β ≤ π)

γ is the angle between v and the positive z-axis ($0 \le \gamma \le \pi$).

The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used the notions of slope and angle of inclination. In space, we want a way to describe how a *plane* is tilting. We accomplish this by multiplying two vectors in the plane together to get a third vector perpendicular to the plane. The direction of this third vector tells us the "inclination" of the plane. The product we use to multiply the vectors together is the *vector* or *cross product*, the .second of the two vector multiplication methods. We study the cross product in this section

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. If u and v are not parallel, they determine . a plane. We select a unit vector n perpendicular to the plane by the right-hand rule This means that we choose n to be the unit (normal) vector that points the way your right). Then12.27 thumb points when your fingers curl through the angle from u to v (Figure .the cross product u * v ("u cross v") is the *vector* defined as follows

DEFINITION

$$\mathbf{u} \times \mathbf{v} = (|\mathbf{u}| |\mathbf{v}| \sin \theta) \mathbf{n}$$

Parallel Vectors

Nonzero vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

The cross product obeys the following laws.

lars, then
$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
$(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$
$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

 $\mathbf{u} \times \mathbf{v}$.

The construction of

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}.$

$|\mathbf{u} \times \mathbf{v}|$ Is the Area of a Parallelogram

Because **n** is a unit vector, the magnitude of $\mathbf{u} \times \mathbf{v}$ is

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| |\sin \theta| |\mathbf{n}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.$$

This is the area of the parallelogram determined by **u** and **v** (Figure 12.30), $|\mathbf{u}|$ being the base of the parallelogram and $|\mathbf{v}| |\sin \theta|$ the height.

Calculating the Cross Product as a Determinant
If
$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$
 and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, then
 $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$.

EXAMPLE 1 Find
$$\mathbf{u} \times \mathbf{v}$$
 and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

Solution

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1 \\ -4 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix} \mathbf{k}$$
$$= -2\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}$$
$$\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v}) = 2\mathbf{i} + 6\mathbf{j} - 10\mathbf{k}$$

EXAMPLE 2 Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2) (Figure 12.31).

Solution The vector $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane because it is perpendicular to both vectors. In terms of components,

$$\overline{PQ} = (2 - 1)\mathbf{i} + (1 + 1)\mathbf{j} + (-1 - 0)\mathbf{k} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

$$\overline{PR} = (-1 - 1)\mathbf{i} + (1 + 1)\mathbf{j} + (2 - 0)\mathbf{k} = -2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$$

$$\overline{PQ} \times \overline{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} \mathbf{k}$$

$$= 6\mathbf{i} + 6\mathbf{k}.$$

Triple Scalar or Box Product

The product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is called the **triple scalar product** of \mathbf{u} , \mathbf{v} , and \mathbf{w} (in that order). As you can see from the formula

$$|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = |\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos \theta|,$$

the absolute value of this product is the volume of the parallelepiped (parallelogram-sided box) determined by \mathbf{u} , \mathbf{v} , and \mathbf{w} (Figure 12.34). The number $|\mathbf{u} \times \mathbf{v}|$ is the area of the base

EXAMPLE 3 Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2) (Figure 12.31).

Solution The area of the parallelogram determined by P, Q, and R is

$$\overline{PQ} \times \overline{PR} = |6\mathbf{i} + 6\mathbf{k}|$$

$$= \sqrt{(6)^2 + (6)^2} = \sqrt{2 \cdot 36} = 6\sqrt{2}.$$
Values from Example 2

The triangle's area is half of this, or $3\sqrt{2}$.

EXAMPLE 4 Find a unit vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1), and R(-1, 1, 2).

Solution Since $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane, its direction **n** is a unit vector perpendicular to the plane. Taking values from Examples 2 and 3, we have

$$\mathbf{n} = \frac{PQ \times PR}{|\vec{PO} \times \vec{PR}|} = \frac{6\mathbf{i} + 6\mathbf{k}}{6\sqrt{2}} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{k}.$$

Calculating the Triple Scalar Product as a Determinant

 $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$

EXAMPLE 6 Find the volume of the box (parallelepiped) determined by $\mathbf{u} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\mathbf{v} = -2\mathbf{i} + 3\mathbf{k}$, and $\mathbf{w} = 7\mathbf{j} - 4\mathbf{k}$.

Solution Using the rule for calculating determinants, we find

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 0 & 3 \\ 0 & 7 & -4 \end{vmatrix} = -23.$$

The volume is $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}| = 23$ units cubed.

Cross Product Calculations

In Exercises 1–8, find the length and direction (when defined) of $u \times v$ and $v \times u.$

1. u = 2i - 2j - k, v = i - k

5. u = 2i, v = -3j

6. $\mathbf{u} = \mathbf{i} \times \mathbf{j}, \quad \mathbf{v} = \mathbf{j} \times \mathbf{k}$

7.
$$\mathbf{u} = -8\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$$
, $\mathbf{v} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$
8. $\mathbf{u} = \frac{3}{2}\mathbf{i} - \frac{1}{2}\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$

In Exercises 9–14, sketch the coordinate axes and then include the vectors u,v, and $u\,\times\,v$ as vectors starting at the origin.

9. $\mathbf{u} = \mathbf{i}, \mathbf{v} = \mathbf{j}$	10. $u = i - k$, $v = j$
11. $u = i - k$, $v = j + k$	12. $u = 2i - j$, $v = i + 2j$
13. $u = i + j$, $v = i - j$	14. $u = j + 2k$, $v = i$