
Microprocessor (Lecture -5-)

 28

Comparison AND JUMP INSTRUCTIONS OF THE 8085
MICROPROCESSOR

Compare Operations (CMP, CPI) :- These instructions compare the accumulator

with the required 8-bit data, setting the appropriate flag and leaving the accumulator

untouched.

The result of the comparison is shown by setting the flags as follows:-

If A = (r/byte) then CY=0 and Z=1

If A < (r/byte) then CY=1 and Z=0

If A > (r/byte) then CY=0 and Z=0

Notes of flags affection
 We can see from the previous experiments that only arithmetic and logical

instructions affect the flag register, and we notice some exceptions.

1- The four rotate instructions, STC, CMC, and DAD instructions affect carry flag only

and we can write the effect is: CY.

2- DCR and INR instructions affect all the flag bits except the carry bit and we can

write the effect is: All but CY.

3- INX, DCX, and CMA instructions don’t affect any flag bits and we can write the

effect is: None.

4- Other arithmetic and logical instructions affect all the flag bits and we can write the

effect is: All.

Effect Function No. of
Bytes

Type Instruction No

All Compare r with A (A-r) 1 Logical CMP r 1.

All Compare byte with A

(A-byte)

2 Logical CPI byte 2.

Microprocessor (Lecture -5-)

 29

It is known that the flow of some program may be deviated by specific jump

instructions. These jumps test the status of the appropriate flags and jump accordingly

to the specified address, given by the two bytes following the jump instruction in the

order (Low Byte, High Byte). The types of JUMPs supported are:

1. JMP (address):- This instruction jumps unconditionally to the specified address.

2. JZ (address):- This instruction tests the zero flag bit, and jumps to the specified

address if this bit is set.

3. JNZ (address):- This instruction tests the zero flag bit, and jumps to the specified

address if this bit is reset.

4. JC (address):- This instruction tests the carry flag bit, and jumps to the specified

address if this bit is set.

5. JNC (address):- This instruction tests the carry flag bit, and jumps to the specified

address if this bit is reset.

6. JM (address):- This instruction tests the sign flag bit, and jumps to the specified

address if this bit is set.

7. JP (address):- This instruction tests the sign flag bit, and jumps to the specified

address if this bit is reset.

8. JPE (address):- This instruction tests the parity flag bit, and jumps to the specified

address if this bit is set (even parity).

9. JPO (address):- This instruction tests the parity flag, bit, and jumps to the

specified address if this bit is reset (odd parity).

Pc: program counter. Notice: Jumps inst. Check the flags but not affect the flags

Counters

Effect Function No. of
Bytes

Type Instruction No

None Pc=address 3 Branch JMP address 1.

None Pc=address if Z=1 3 Branch JZ address 2.

None Pc=address if Z=0 3 Branch JNZ address 3.

None Pc=address if CY=1 3 Branch JC address 4.

None Pc=address if CY=0 3 Branch JNC address 5.

None Pc=address if S=1 3 Branch JM address 6.

None Pc=address if S=0 3 Branch JP address 7.

None Pc=address if P=1 3 Branch JPE address 8.

None Pc=address if P=0 3 Branch JPO address 9.

Example:-
Check if A+B = 50 then

increment the result
 MVI A, …

 MVI B, …

 ADD B

 CPI 50

 JNZ end

 INR A

End: RST1

Example:-
Check if A+B = 0 then

increment the result
 MVI A, …

 MVI B, …

 ADD B

 JNZ end

 INR A

End: RST1

Example:-
Check if A = 0 then

increment A
 MVI A, …

 ANA A ; (/ ORA A/

 ; CPI 0/ ADI 0)

 JNZ end

 INR A

End: RST1

Microprocessor (Lecture -5-)

 30

 Designing a counter is a frequent programming application. Counters are used

primarily to keep track of events.

 A counter is designed by loading an appropriate count in a register. A loop is set

up decrement the count for a down-counter (counts in the descending order) by using

the DCR (decrement by one) instruction or to increment the count for an up-counter

(counts in the ascending order) by using the INR (increment by one) instruction. A loop

is established to update the counter, and each count is checked to determine whether it

has reached the final number; if not the loop is repeated.

Examples:-

1- 1>= No. of loops < 256

2- No. of loops = 256

3- No. of loops > 256

Note:- You can see that down-counter is preferred to use than up-counter.

Using down-counter:-

 MVI C, 8

Loop: DCR C

 JNZ Loop

 RST1

Using UP-counter:-

 MVI C, 0

Loop: INR C

 MOV A, C

 CPI 8

 JNZ Loop

 RST1

Using down-counter:-

 MVI C, 0

Loop: DCR C

 JNZ Loop

 RST1

No. of loops >= 256

Using UP-counter:-

 LXI B, 0

Loop: INX B

 MOV A, C

 CPI lowbyteno

 JNZ Loop

 MOV A, B

 CPI highbyteno

 JNZ loop

 RST1

Using down-counter:-

 LXI B, 3b5h

Loop: DCX B ; not effect Z flag

; To affect the Z flag and check if B or

C is not finished then continue the loop

 MOV A, C

 ORA B

 JNZ Loop

 RST1

Microprocessor (Lecture -5-)

 31

Useful instructions:

PCHL: The contents of register H and L are copied into the program counter. The

contents of H are placed as a high-order byte and of L as a low-order byte.

Effect Function No. of

Bytes
Type Instruction

None PC=HL 1 Branch PCHL

Class Work
1) Compare the value of register A and B, then obtain the last value of A:

 A=A+10h when A=B , A=A-5 when A<B, A=A+B when A>B

Address HexCode Label Opcode Operands Comments
2000

2001

 MVI A, ; A=

2002

2003

 MVI B, ; B=

2004 CMP B ; A-B
2005

2006

2007

10

20

 JZ EQUAL ; IF Z=1 THEN PC=2011

2008

2009

200A

0D

20

 JC SMALLER ; IF CY=1 THEN PC=200E

200B ADD B ; A=A+B
200C CF RST1 ; End
200D

200E

05

SMALLER: SUI 5 ; A=A+5

200F CF RST1 ; End
2010

2011

10

EQUAL: ADI 10 ; A=A+10

2012 RST1 ; End

2) Calculate the result of (8*8) by using two methods.

A) By using Summation method:

Address HexCode Label Opcode Operands Comments
2000 XRA A ; A=A XOR A=0, S=0,Z=1,AC=0, P=1,

CY=0
2001

2002

2003

08

08

 LXI B,808 ; B=8, C=8

2004 NEXT: ADD B ; A=A+B
2005 DCR C ; C=C-1
2006

2007

2008

04

20

 JNZ NEXT ; IF Z=0 THEN PC=2004

2009 RST1 ; End

Microprocessor (Lecture -5-)

 32

B) By using Rotate method:

Address HexCode Label Opcode Operands Comments
2000

2001

08

 MVI A,8 ; A=8

2002 RAL ; A=A*2=10
2003 RAL ; A=A*2=20
2004 RAL ; A=A*2=40
2005 RST1 ; End

3- Calculate 11/4=2 and the remainder is 3

Address HexCode Label Opcode Operands Comments
2000

2001

0B

 MVI A,0B ; A=0B

2002

2003

2004

00

04

 LXI B, 400 ; B=4, C=0

2005 NEXT: CMP B ; A-B
2006

2007

2008

0E

20

 JC END ; IF CY=1 THEN PC=200E

2009 SUB B ; A=A-B
200A INR C ;C=C+1
200B

200C

200D

05

20

 JMP NEXT ; PC=2005

200E END: RST1 ; End

4- Calculate the result of C=B2+5 when B=5

Address HexCode Label Opcode Operands Comments
2000

2001

2002

05

05

 LXI B,0505 ; B=05, C=05

2003 XRA A ; A=A XOR A=0, S=0,Z=1,AC=0, P=1,

CY=0
2004 NEXT: ADD B ; A=A+B
2005 DCR C ; C=C-1
2006

2007

2008

04

20

 JNZ NEXT ; IF Z=0 THEN PC=2004

2009 ADD B ; A=A+B
200A MOV C,A ; C=A
200B END: RST1 ; End

Homework
1- exclusive or register A and B, then add 3 to register C if the parity is even otherwise

add 30h to C, when A=35h, B=20h, C=10h

2- Check if the content of register B is even then C=1, otherwise C=2. (by using two

methods)

3- Calculate the sum of numbers between 10 and 1.

