
Microprocessor (Lecture -9-)

 47

SUBROUTINE AND STACK OPERATIONS

In this experiment, a rather important group of instructions is further studied

namely the subroutines commands. The subroutine is a program which is executed by

(CALL) instruction and after finishing it operation its returns to the address called from

by a (RET) instruction. This is useful for replacing repetitive block of operations or for

properly organizing programs.

The stack is a section of memory utilizing as a Last In First Out (LIFO). This

operation is useful for keeping track of the program flow, i.e. the last subroutine call is

stored on the top of the stack. Therefore when a return from a subroutine is executed,

the address is got from the top of the stack which is reduced by two, to point to a next

subroutine address.

The stack can be simulated by a pack of books where the last book is put in the

top of the stack, and it will be then the first book to be removed from the stack.

Stack Instructions
1. PUSH rp :- This instruction puts the content of the required rp on the stack, the

mechanism of this instruction are:

a. Decrement the stack pointer by two.

b. Put rp on the stack.

2. POP rp :- This instruction loads a register pair from the contents of the top of stack,

the mechanism of this instruction are:

a. Get rp from top of the stack.

b. Increment stack pointer by two.

3. XTHL: The contents of the L register are exchanged with the stack location pointed

out by the content of the stack pointer register. The contents of the H register are

exchanged with the next stack location (sp+1).

4. SPHL: Loads the content of the H and L registers into the stack pointer register, the

contents of the H register provide the high-order address and the contents of the L

register provide the low-order address.

Microprocessor (Lecture -9-)

 48

Effect Benefits Function No. of
Bytes

Type Instruction No

None 1- To save the

contents of

useful

registers

which needed

later

2- Exchange

data

3- subroutine

Push rp:

(sp=sp-2,

Msp=Lreg

Msp+1=Hreg)

Push psw:

(sp=sp-2,

Msp=F

Msp+1=A)

1 stack Push rp/psw 1.

None Pop rp:

 (Lreg=Msp,

Hreg=Msp+1,

sp=sp+2)

Pop psw:

 (F=Msp,

A=Msp+1,

sp=sp+2)

1 stack Pop rp/psw 2.

None To make

Exchange

HL Top

 of Stack

1 Data

Transfer
XTHL 3.

None To let the sp

points from

specific

location of

memory

SP=add 3 Data

Transfer
LXI sp,add 4.

None SP=HL 1 Data

Transfer
SPHL 5.

None SP=SP+1 1 Arithmetic INX SP 6.

None SP=SP-1 1 Arithmetic DCX SP 7.

CY HL=HL+SP 1 Arithmetic DAD SP 8.

PSW: high byte=A, Low byte=Flag register

SP: stack pointer

Useful instructions:
XCHG: The contents of register H are exchanged with the contents of register D, and

the contents of register L are exchanged with the contents of register E.

Effect Function No. of

Bytes
Type Instruction

None HL DE 1 Data Transfer XCHG

Microprocessor (Lecture -9-)

 49

Subroutine Instructions

The subroutine operation can be simplified by the block diagram given in

Figure 6.

CALL SUB 1

CALL SUB 1

Subroutine SUB 1

CALL SUB B

RET

Subroutine SUB 2

RET

Figure (6): illustrating the mechanism of subroutine operations.

Main Program

Microprocessor (Lecture -9-)

 50

The subroutine instructions falling under this category are:

1. CALL (address): This instruction performs an unconditional call to a subroutine at

the assumed address. The mechanics behind the CALL instruction are:

a. The top of the stack is decremented by two.

b. Program counter (after fetch instruction) is put on the stack.

c. Program counter is then modified to the new address.

This mechanics can be viewed clearly from this example (PC=2000), (SP=2099):

 PC after fetch PC after execute SP after execute

2000 ADI 04 2002 2002 2099

2002 CALL 2040 2005 2040 2097

2005 ANA B

2. CC (address):- This instruction performs the conditional subroutine call to the given

address, if the carry flag bit is set.

3. CNC (address):- This instruction performs the conditional subroutine call to the given

address, if the carry flag bit is reset.

4. CZ (address):- this instruction performs the conditional subroutine call to the given

address, if the zero flag bit is set.

5. CNZ (address):- This instruction performs the conditional subroutine call to the given

address, if the zero flag bit is reset.

6. CM (address):- This instruction performs the conditional subroutine call to the given

address, if the sign flag bit is set.

7. CP (address):- This instruction performs the conditional subroutine call to the given

address, if the sign flag bit is reset.

8. CPE (address):- This instruction performs the conditional subroutine call to the given

address, if the parity flag bit is set.

9. CPO (address):- This instruction performs the conditional subroutine call to the given

address, if the parity flag bit is reset.

Microprocessor (Lecture -9-)

 51

10. RET:- This instruction performs an unconditional return from the subroutine to the

calling entry point of it. The mechanism of the RET instruction are:

a. Move the contents of the stack pointer to the program counter.

b. Increase stack pointer by two.

This can be illustrating by the following example (PC=2040), (SP=2097):

 PC after fetch PC after execute SP after execute

2040 SBI 03 2042 2042 2097

2042 RET 2043 2005 2099

2043

The conditional instructions are: RZ, RNZ, RC, RNC, RPE, RPO, RP and RM.

The conditions, in which these instructions are operating according to flags, are the

same as these illustrating with the conditional call instructions.

Effect Function No. of
Bytes

Type Instruction No

None unconditional 3 Branch Call add 1.

None call if CY=1 3 Branch CC add 2.

None call if CY=0 3 Branch CNC add 3.

None call if Z=1 3 Branch CZ add 4.

None call if Z=0 3 Branch CNZ add 5.

None call if S=1 3 Branch CM add 6.

None call if S=0 3 Branch CP add 7.

None call if P=1 3 Branch CPE add 8.

None call if P=0 3 Branch CPO add 9.

Microprocessor (Lecture -9-)

 52

Notes

 Sometimes in the subroutines we need to use some registers which content value are

useful in the main program then we must save them by pushing them at the start of

this subroutine and popping them at the end of this subroutine to retrieve them

content for the main program.

 Sometimes we need to pass parameters to the subroutine. For example when the

subroutine works on register D and in the main program we need this subroutine to

work on register B then before calling this subroutine we must move the content of

register B to register D.

Class Work

1. Write a program to reset the flag register.

Address HexCode Label Opcode Operands Comments
2000

2001

2002

50

20

 LXI SP,2050 ; SP=2050

2003

2004

2005

00

00

 LXI H,00 ; HL=00

2006 PUSH H ; [SP]=L, [SP+1]=H
2007 POP PSW ; A=[S], F=[SP+1]
2008 RST1 ; RST1

Effect Function No. of
Bytes

Type Instruction No

None unconditional 1 Branch RET 1.

None Return if CY=1 1 Branch RC 2.

None Return if CY=0 1 Branch RNC 3.

None Return if Z=1 1 Branch RZ 4.

None Return if Z=0 1 Branch RNZ 5.

None Return if S=1 1 Branch RM 6.

None Return if S=0 1 Branch RP 7.

None Return if P=1 1 Branch RPE 8.

None Return if P=0 1 Branch RPO 9.

Microprocessor (Lecture -9-)

 53

2. Write a program using subroutine which adds two registers and check the result if

it is equal to 10 then return to main program, otherwise add 5 to the result and

return. In both cases in the main program after returning from this subroutine

subtract 3 from the result.

Address HexCode Label Opcode Operands Comments
2000

2001

2002

50

20

 LXI SP,2050 ; SP=2050

2003

2004

 MVI A, ; A=

2005

2006

 MVI B, ; B=

2007

2008

2009

0D

20

 CALL ADDS ; PC=

200A

200B

03

 SUI 3 A=A-3

200C RST1 ; END
200D ADDS: ADD B ; A=A+B
200E

200F

0A

 CPI 0A ; A-0A

2010 RZ ; IF Z=1 then PC=address after call
2011

2012

05

 ADI 5 ; A=A+5

2013 RET ; PC=address after call

3. C= (B2+5) AND (D2+5)

Address HexCode Label Opcode Operands Comments
2000

2001

2002

50

20

 LXI SP,2050 ; SP=2050

2003

2004

 MVI B, ; B=

2005 MOV A,B ; A=B
2006

2007

2008

13

20

 CALL FINDS ; PC=2013

2009 MOV L,A ; L=A
200A

200B

 MVI D, ; D=

200C MOV A,D ; A=D
200D

200E

200F

13

20

 CALL FINDS ; PC=2013

2010 ANA L ; A=A AND L
2011 MOV C,A ; C=A
2012 RST1 ; END
2013 FINDS: MOV E,A ; E=A
2014 MOV C,A ; C=A
2015 DCR C ; C=C-1
2016 NEXT: ADD E ; A=A+E
2017 DCR C ; C=C-1
2018

2019

201A

16

20

 JNZ NEXT ; IF Z=0 then PC=2016

201B

201C

05

 ADI 5 A=A+5

201D RET ; PC=ADDRESS AFTER CALL

Microprocessor (Lecture -9-)

 54

Homework

1. Exchange DE, HL using all possible methods.

2. C=(9*7)+(6*4)

3. Write a program to copy the odd number of any array started at location (2060H) and

ended at location (2065H) to another array starting at address (2080H). The even

number must be stored at memory locations starting at address (20A0H). All the copy

operations above must be carried out in a subroutine.

4. Write a program to find the average of four data bytes stored at memory locations

(2030H-2033H). Store the result in register (E). The summation of the data bytes must

be carried out in a subroutine. Assuming that the result of summation does not exceed

an (8-bit). Data: (10,2f,1d,4a)

