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LECTURE OUTLINES

= We need tools to build any communication system.
= Mathematics is our premium tool to do work with signals and system:s.

= In this lecture we study:

O Signals Classifications

Q Fourier Transform

Q Fourier Transform Properties

O Energy Spectrum, Power Spectrum and Signal Bandwidth

0 Linear Systems and Signal Transmission
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HOW DO WE COMMUNICATE !

O Sound (Voice, Low Bit-Rate Underwater), Light (Optical Fiber, Heliograph),
Electromagnetics Radiation (R.F. Signal)

0 Baseband (e.g. Ethernet — 100 Mbps using Manchester Code), R.F. Modulation ( e.g.
Radio — 100 MHz Frequency Modulation)

O Analogue (e.g. AM / FM Radio), Digital (e.g. Music CD)

O Transmission Medium / Channel (e.g. Free Space, Optical Fiber, Coaxial Cable)
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WHAT WE SUFFER FROM

4 Noise / Interference (e.g. Atmospheric R.F. Noise, Thermal Noise in Electronic
Components)

O How fast we communicate (> 10 Tbps)
0 How do we cope with errors — detect and/or correct ?!!

0 How can we have multiple access.
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REVIEW — SIGNALS

U The most general class of signals used for modeling the interaction of signals in
systems are sinusoids:

x(t) = Acos(wot + @)

A, wo, P are Amplitude, angular frequency and phase, respectively

U_Example:
x(t) = 10 cos[2m(440)t — 0.47]

The pattern repeat itself every ﬁ = 2.27ms
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REVIEW — SIGNALS

PROPERTY EQUATION
Equivalence sin@® = cos (@ = g) orcos® = sin(0 + g)
Periodicity cos(0 — 2nk) = cos ¢
Evenness of cosine cos(—@) = cos @
Oddness of sine sin(—®) = —sin@®
Trigonometric identity 1 sin®® + cos?@ =1
Trigonometric identity 2 cos 20 = ssin® cos @
Trigonometric identity 3 sin(a + b) =sinacosb + cosasinb
Trigonometric identity 4 cos(a+ b) =cosacosbhb Fsinasinb
Trigonometric identity 5 cos?@ = 0.5(1 + cos 20)
Trigonometric identity 6 sin?@ = 0.5(1 — cos 20)
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REVIEW — SIGNALS

U Phase and Time Shits of Sinusoidal Signals:

2t, 0<t<1/2

U We wish to consider the signal x; (t) = s(t — 2). s(f) = 1(4_20 L/2<t<2
3 ? -

O As a starting point we note that s(t) is active over 0, otherwise

just the interval 0 <t < 2,sowith t - t — 2, we have:

0 <(t—-2)<2=2<t<4

which means that x, (t) is active over 2 <t < 4.
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REVIEW — SIGNALS

2(t-2), 0<(t-2)<1/2 ) . L

We say that the signal is delayed in time to
1(4 _ 2(1_2)) 1/2<(t- 2) ) s(t) if t; > 0, and advanced in time relative
3 ’ to s(t)if t; < 0.

|
A

xl(t) =

0, otherwise

2t—4, 2<tL5/2
= 9 %(8—21), 5/2<t<4 2t-2) ——

0, otherwise | | — ¢
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COMPLEX NUMBERS

U A complex number is another representation of numbers but in term of z = (x, y).
U The 1%t number, x, is called the real real and y is called the imaginary part.

z=xy) =x+]jy

JIm{z} HEAD ~_

U The polar form is:
z=rel® =rs @ =|z|le) 8%

Imaginary Axis

" 6 = DIRECTION
0 Real Axis  9ie(z)

U Identities: let z1 = x1 + jyl, z2 = x2 + jy2
» zp = (x1+x2) +jiyl +y1) (sum) TAIL
» zp = (x1 —x2) +j(yl —y1) (difference)
» 2122 = (x1x2 — yly2) + j(x1y2 + y1x2) (Product)
z1 _ (x1x2+y1y2)—j(x1y2—-y1x2) (Division)
z2 x22y22
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COMPLEX NUMBERS

|z1]| = /x12 + y12 Magnitude of complex number
¢2z1 = tan™! (z—i) Angle of complex number
=z1" =x1 —jyl Complex conjugate
[z=x+ iy - ‘Rm{:] “Km{z}
rectangular
X X 9
Ne{z} p ez}
e — — - =y
(x, y) )
R
(@) voar ()
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COMPLEX EXPONENTIALS AND PHASORS

U Signal can be expressed in term of complex exponentials.

U The complex exponential form is written as:
Z(t) — A ej(w0t+ ¢)
ONotethat: |z(t)]=A and 2£2z(t) =arg{z(t)} = wot + ¢

U Euler’s formula:

z(t) = Ae/(@ot*+®) = A cos(wot + ¢) + jA sin(wyt + @)

Re{z(t)} = Acos(wot + @) and Im{z(t)} = Asin(wyt + 0)
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SIGNALS IN TIME DOMAIN

0 A signal is a set of data or information, which can be represented as a function of

TIME s(t).

0 Deterministic signal is a signal whose physical description is known completely,

either in a mathematical form or a graphical form

» Signal Energy: E; = f_':o [s(0)]%dt

» Signal Power: Py = lim fj;o |s(6)|%dt
0 Signal Classification:

> Continuous Time vs Discrete Time
» Periodic vs. Aperiodic
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SIGNALS IN FREQUENCY DOMAIN

Time domain Frequency domain
s(t) S(f) = Ix{()u =4 It

* cos(27ft)

U,

* Periodic signal with period 1/f;: s, =fy A s dt
N j2xnfyt
Z}S”‘ :> £ 1 s | I ‘I | 2 A I
7 1 . nfy . l I
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FOURIER ANALYSIS

0 How do we represent the distribution of ENERGY / POWER of a signal with
frequency?

> A periodic waveform x(t) (infinite energy / finite power) has a Fourier Series
representation — power carried at discrete frequencies.

> A non-periodic waveform x(t) (finite energy / zero power) has a Fourier
Transform representation — energy carried at ALL frequencies.

> A ‘random waveform’ x(t), or sample sequence from a random process (infinite

energy / finite power), has a Power Spectral Density (PSD) representation, S, (f) —
power carried at ALL frequencies.
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FOURIER SERIES

O A continuous — time periodic function, x(t), can (under certain conditions) be
represented by FOURIER SERIES - i.e. the sum of different sinusoids/cosinusoids
of different amplitudes, frequencies and phases.

O The Fourier series takes many forms:

f() = Ay + Ymoi Ay cos(nwgt) + Yp—q By sin(nwgt) ¢))
f() = A+ Yn=1Cpcos(nwot — ¢y) 2

f©) = 32 o ay e/n0t ®

+To/2 . .
1 o —jnwqt This known as Fourier
n = 7- f x(t) e7/"hdt | coefficient

0 fi
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FOURIER TRANSFORM

0 Given a Time Domain signal s(t), its Fourier Transform is defined as follow:
S(f) = f_Jr;o s(t)ef2nft gt Fourier Transform

0 The Time Domain signal s(t) can be expressed by S(f) using an inverse FT:

s(t) = fj;o S(fel?mt qf Inverse Fourier Transform

= Fourier Spectrum of s(t): S(fH)
= Magnitude Spectrum of s(t): | S(f) |
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SPECTRUM OF UNIT IMPULSE

At is a unit impulse, which is zero everywhere except

at =0, and has unit area. 1/_e—>oo
w t=0 t
()= o(t)dt =1
() {O - and :[ (2) 0
s(N=80) <  S(f)= j S(t)e > dt
=~f
s(7) fS(f) area =1
1 ‘ 1 _/
0 t 0 f e '
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SPECTRUM OF CONSTANT SIGNAL

s 5(1)
A
s(t)=A4
0 ‘
S(f)=A[ e dr
S(f)
y ‘ S(0)=4 j e/t = 4 j ldt =0
0 / S(f) = Aj e dt=0 for f#0

S(f)=456(f)
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SPECTRUM 0F SINUSOIDAL

s()

s(t) =cos(2m ft)

S(f)= [ cos2z fyt-e " dt
- j'%(ejlﬂ/“l +e—j2/r/nl)'e—j277ﬂdt

172

=36 =S +6(f+ 1)

202: Communication Systems

SPECTRUM OF S(T)COS(2ITFT)

x(t) =s(t)cos(2z f,t)

X(f) = J.S([)COS(Zﬂﬁf)'e_'iZII)dt - J‘S(t).%(ejyr/},l +e—j27r!},1).e—/’27rﬂdt

0

z%]iS(t)_e—/Z;z(,r'—f;,)rdt+L2]ES(t).e—/‘szd;mdt :%[S(f—fo)*‘s(f'*'fo)]

S() X0

3202: Communication Systems
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SPECTRUM OF SINGLE RECTANGULAR PULSE

s(t)

A
A — 128872
| s(t) =

0 otherwise

-7/2 0 72 t

— —

S(f) 7/2 . e—j/rjr __e+j7rfr
i S(f)=A [ e’ dt =4 ———
-2z f
et 0 U2z f =AT: Arsine(f7)
inc(x) = SnGrx) sinc function is an even, oscillating function with a decreasing magnitude.
' zmx  + It has unit peak at x=0, and zero crossing points at x= non-zero integers.
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FOURIER TRANSFORM PROPERTIES

as,(t)+ Bs, (1) < aS,(N)+BS,(f) Linearity
5,()s,(2) < S(H*S,() Convolution
S(1) = s(=f) Duality
s(t-7) = 8{ e Time shift
s(t)e < Siref) Frequency shift
s(hcosrfyt) & LHS(f-£)+S(f+ )] Modulation
s(at) s 1 S( i ] Time scale

(for any real a #0) la| \a
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SPECTRUM OF IMPULSE TRAIN

S(I) = Z::-l 50 - I‘ITE)) = z S”e]‘Z’”lfuf fn = 7
o0 0

R

B ~T; 0 7 UF, t

S() =2 5:8(f =nfy)

N

1 0 in ¢ < —j27nfot i
-5 [*se s = £,], " @y dt = f,
S =157 8(f~nfy)

RN NN

26 o 0 S 2
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TIME AND FREQUENCY SIGNAL

a If the time-domain description of a signal is changed, then the frequency domain
signal is changed in inverse manner. Hence, the arbitrary specifications of a signal
cannot be performed in both time and frequency signal, but exclusively in one
domain either time or frequency.

Q If the FT of a signal in frequency domain has a finite band (zero outside the finite
band), then the signal defined as strictly limited in frequency. The time domain in
this case will be indefinitely.

Q If the IFT of a time domain signal has a finite band (zero outside the finite band),
e.g. square pulse, then the frequency domain signal is extent to infinity. This type of

signals known as strictly limited in time.
0 Signals can be EITHER band limited OR time limited.
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ENERGY AND POWER TYPE SIGNALS

O Energy-Type Signal: A signal is an energyOtype signal if and only if its energy is
positive and finite

s(t) is an energy-type signal if and only if 0 < E; = f:r;o [s(t)|?dt

O Power-type Signal: A signal is a power type signal if and only if its power is
positive and infinite

s(t) is an energy-type signal ifand only if 0 < P; = Tlim fj;o |s(t)|?dt

LOPES3202: Communication Systems 10/18/2017 @

ENERGY AND ENERGY SPECTRUM

4 Energy of energy-type signal:
E=["1soFdt =[" s@s' @t = s(t)[ [ s’ (Her"df } dt
=["s'f )[ I s(z)efwdt} df =[SOS =" |s(f df

= [ u,(ndr

Parseval's Theorem: E = L |s(t) | dt = J: |S(f)‘2 df

0 Energy Spectrum: U (/) = S(f) [
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ENERGY SPECTRUM OF RECTANGULAR PULSE

s(9)
4 A —1/2L5t<71/2
S(t)={ .
0 otherwise
-72 0 72 t
— —
()
- Fourier spectrum: 47
S(f)= Arsine(f7) 20—l 0 Ur—"23 f
Ui
*+ Energy spectrum: 2R
UA = S p 2=AZ 2.5 2 v
(=S 7°sinc”(f7) e g ,
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POWER AND POWER SPECTRUM

Power of power-type signal s(t): [S 02 {s(t) ~T/2<t< T/Z]

0 otherwise

e —

.. | PER ) .1 g2 3
P=lime [ Is@F di=fim [ 15 @F di
5 1 2 i 12 ™ = l S i B e 5 3
= E‘E‘iL' Sr(NI df:f% A}AI!}};IST(/)\“ df :L G, (Hdf
Power spectrum:
ks 0] i
G.(f) = lim 2|5 (f)]

oo ] orm
G.(f) = PB}FJ—T s(t+7)s" (1)
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SIGNAL TRANSMISSION IN LINEAR SYSTEM

0 _A System: refers to any physical device that produces an output signal in response to an input
signal. The input signal is called as an excitation and the output signal as a response.

x(t) — h(t) — v() I(

Impulse Response |

0O_Given impulse response, h(t), and input signal, x(t), how do we find y(t)?
0O Any linear system is completely defined by knowledge of its impulse response, h(t).

O So h(t) is the response (output) of the system, when the input is an impulse —i.e.if x(t) = 6(t)

LOPES3202: Communication Systems
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SYSTEM IMPULSE RESPONSE

Sa(t) a(t)
1/A A—-0 T

0 A t

0 Some basic properties of impulse response function:
> [2 A8t —ty)dt = A
> 7 x(6) 8t — to)dt = x(to) Shifting property
> x(£)6(t — to)dt = x(tg)S(t — tp)dt
du(t)

> 8(t) = =2 andu(®) = [L,8@dr

LOPE3202: Communication Systems
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THE CONVOLUTION INTEGRAL OF LIT

x(t) —— h(t) — (1)

400

y(£) = x(t) * h(t) = f x(0)h(t — 7)dr = h(t) * x(t) = f h(D)x(t — 7)dt

—00

The normal laws of commutativity, associativity, and distributivity, apply —i.e.

x(t) y(®) h(t)

y(©)

xO—— m® = b b——y®  xO— @k |——y®
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IDEAL LOWPASS SYSTEM

Transfer Function H(f) of an ideal lowpass system:
H(f)
1

'Bh 0 Bll f

For a baseband input signal with bandwidth B,:

S¢) HY) itg>5 O
A ]
B, 0 B, / B, 0 B, f -B, 0 B, J

LOPE3202: Communication Systems
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IDEAL BANDPASS SYSTEM

Transfer Function H(f) of an ideal bandpass system:

H(f)
1

0 f-iB, f [f+iB, [
Bandwidth
B,
* For a baseband input signal with bandwidth B.:

If: 1) the center

’ frequency of S(f)
NG () H() is shifted to /. 1)
1 2) B, > 2B,
X p—t
B, 0 B ;5 5 g8/ O 7-1B, 1 7+1B 7 JB. f /4B
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CONVOLUTION EXAMPLE

Q Find y(t) for x(t) = u(t) (step input): u(t) = {1’ t=0
R 0, else
1 1 -t
R=1Q — -
x(t) ] C —|— ] y(®) {C — 1F = h(t) = re &% u(t) = e tu(t)
x(t) h(t) x(Dh(t — 1)
—0—> t i) t :-0 t

>t < 0:no overlap, hence, y(t) = ff;x(r)h(t —17)dt = f_toox(r)h(t —1)dr=0
> t > 0: overlap, hence, y(t) = f_toox(r)h(t —17)dt = fot(l)e‘(”‘f) dr=e7tle’]f=1—e""
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CONVOLUTION EXAMPLE CONT...

O Putting (1) and (2) together we get: y(t) = {(1)’_ ot

h(z)
1 e "u(r)
0 T
h(—1)
eTu(-1) A1
) T FLODING
h(t—1)
e*(t*r)u(t = lel/‘
0 T DISPLACEMENT

LOPES3202: Communication Systems

t<o0
t=0

x(7)
1

—_—t 7

0

b

x(7)

e Oyt —1)

MULTIPLICATION

(Dh(t —1)
1
T
5

=1ty

t INTEGRATION

0
1l//f— —(1-eHu(t)
0
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