

LOPE3202: Communication Systems

LECTURE OUTLINES

- We need tools to build any communication system.
- Mathematics is our premium tool to do work with signals and systems.
- In this lecture we study:
 - Signals Classifications
 - Fourier Transform
 - Fourier Transform Properties
 - Energy Spectrum, Power Spectrum and Signal Bandwidth
 - Linear Systems and Signal Transmission

LOPE3202: Communication Systems

WHAT WE SUFFER FROM

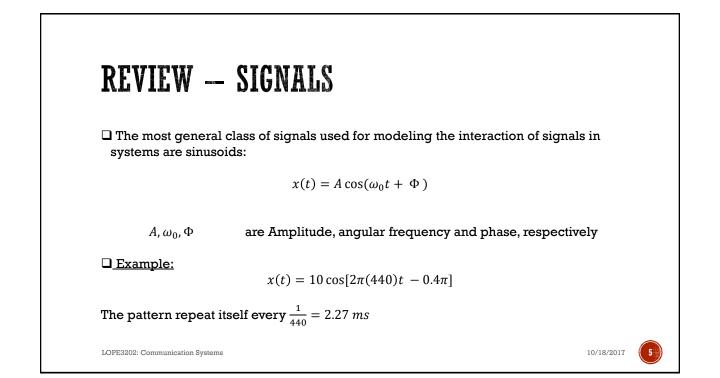
Noise / Interference (e.g. Atmospheric R.F. Noise, Thermal Noise in Electronic Components)

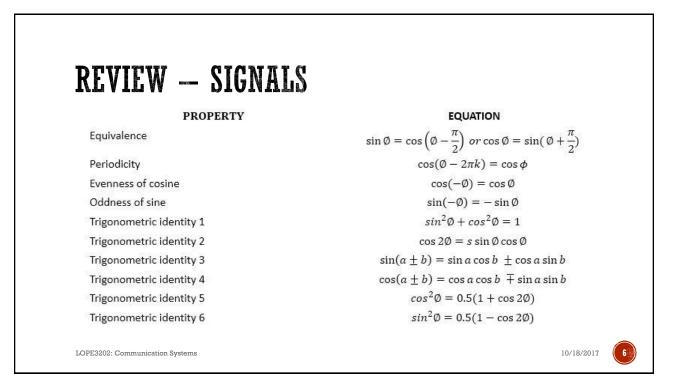
□ How fast we communicate (> 10 Tbps)

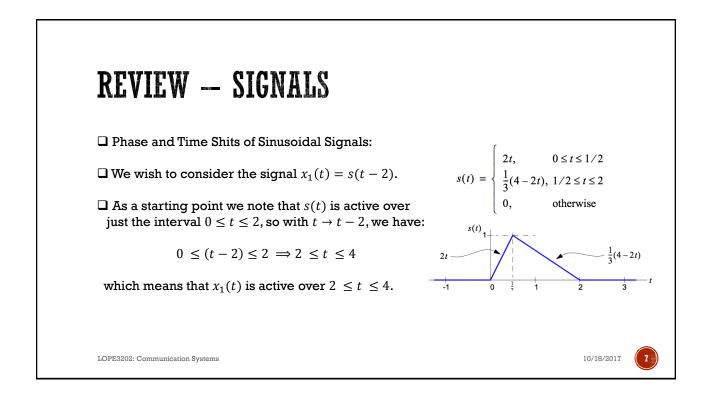
How do we cope with errors – detect and/or correct ?!!

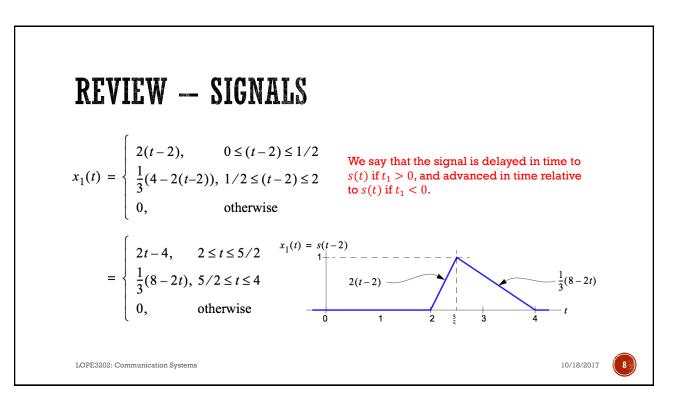
How can we have multiple access.

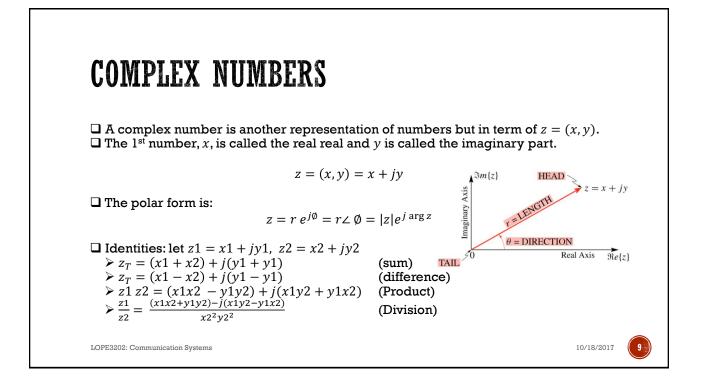
LOPE3202: Communication Systems

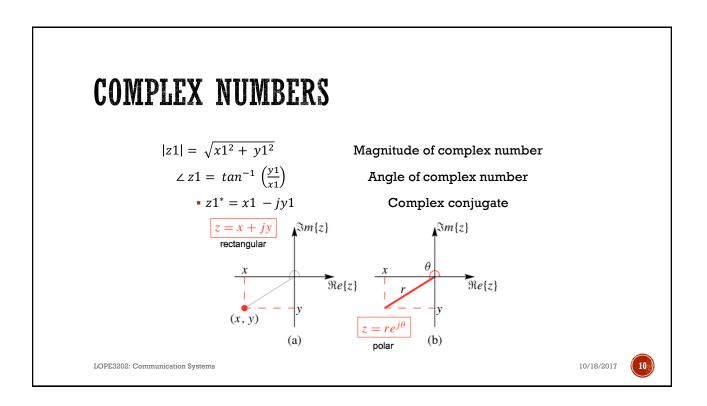


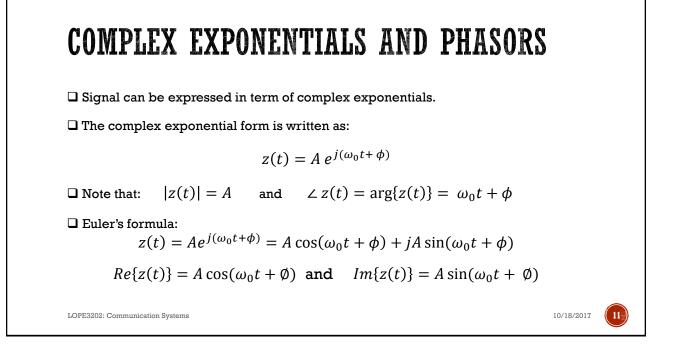












SIGNALS IN TIME DOMAIN

A signal is a set of data or information, which can be represented as a function of *TIME* s(t).

Deterministic signal is a signal whose physical description is known completely, either in a mathematical form or a graphical form

Signal Energy:	$E_s = \int_{-\infty}^{+\infty} s(t) ^2 dt$
≻Signal Power:	$P_{s} = \lim_{T \to \infty} \int_{-\infty}^{+\infty} s(t) ^{2} dt$

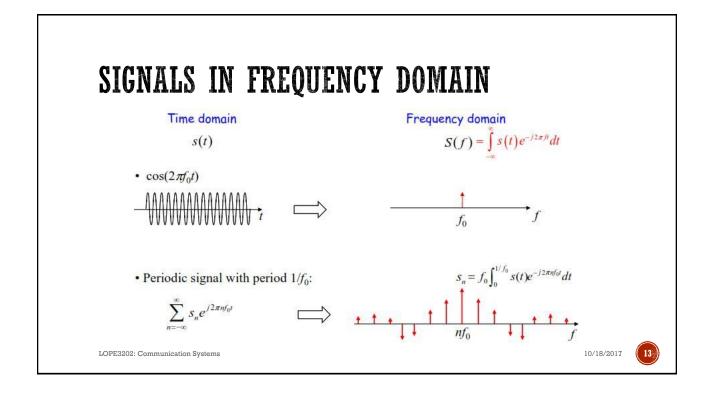
Signal Classification:

> Continuous Time vs Discrete Time

Periodic vs. Aperiodic

LOPE3202: Communication Systems

10/18/2017



FOURIER ANALYSIS

□ How do we represent the distribution of ENERGY / POWER of a signal with frequency?

> A <u>periodic waveform</u> x(t) (infinite energy / finite power) has a <u>Fourier Series</u> representation – power carried at <u>discrete</u> frequencies.

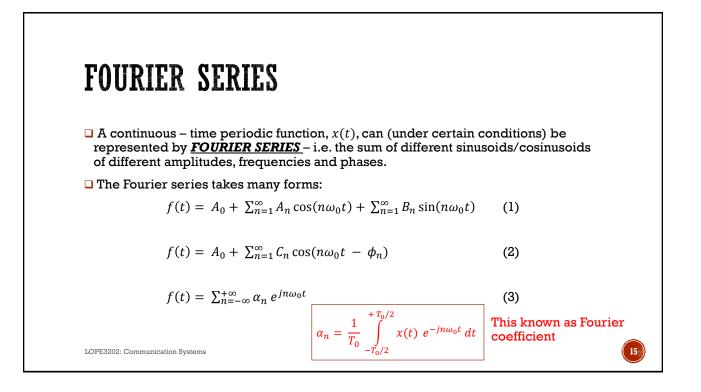
> A <u>non-periodic waveform</u> x(t) (finite energy / zero power) has a <u>Fourier</u> <u>Transform</u> representation – energy carried at <u>ALL</u> frequencies.

> A <u>'random waveform'</u> x(t), or sample sequence from a random process (infinite energy / finite power), has a <u>Power Spectral Density (PSD)</u> representation, $S_x(f)$ – power carried at <u>ALL</u> frequencies.

LOPE3202: Communication Systems

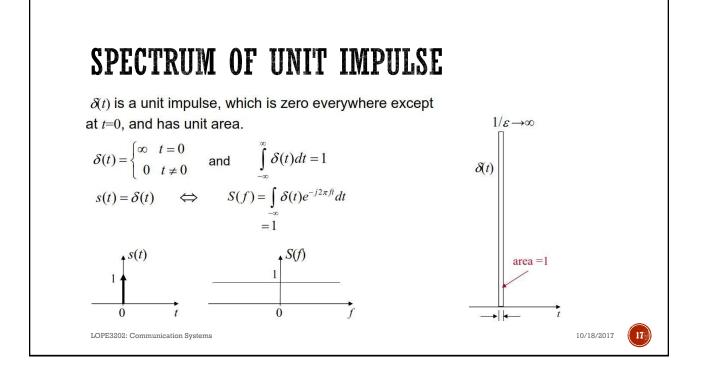
10/18/2017

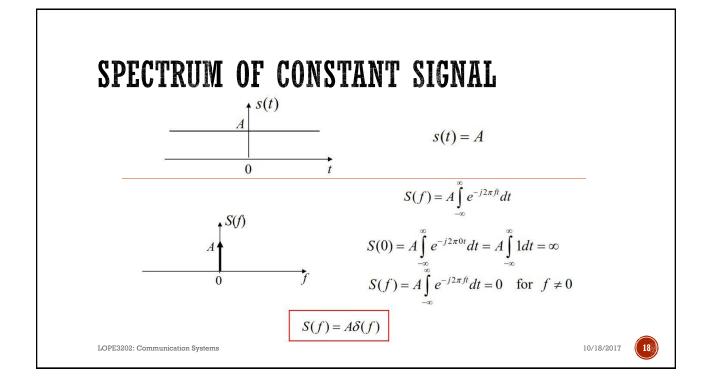
14

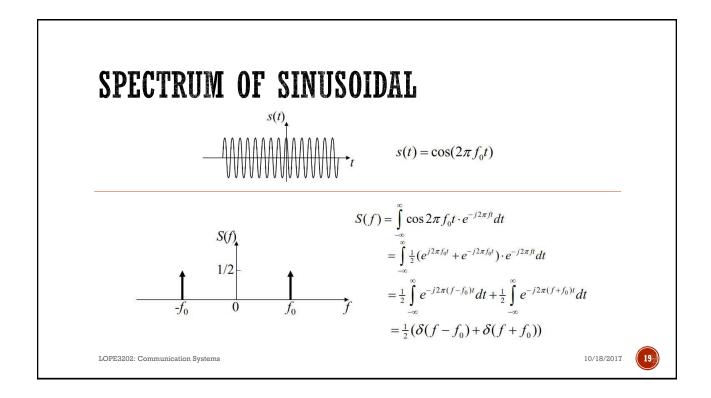


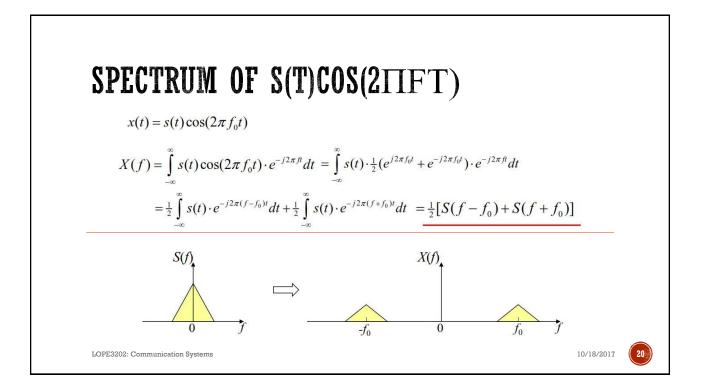
<section-header><text><equation-block><equation-block><text><text><equation-block><equation-block><equation-block><text>

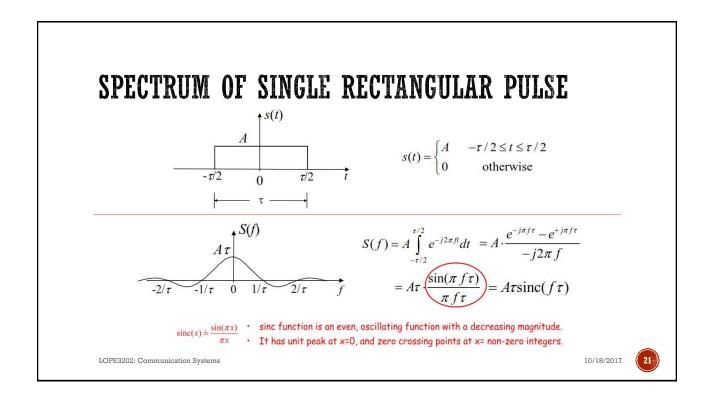
8



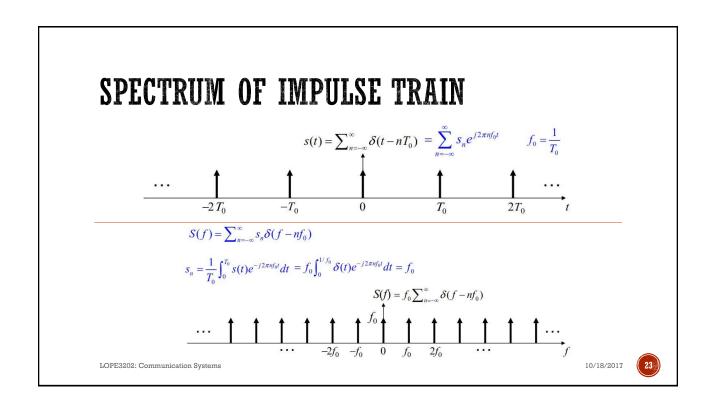








FOURIER TRANSFORM PROPERTIES					
$\alpha s_1(t) + \beta s_2(t)$	\Leftrightarrow	$\alpha S_1(f) + \beta S_2(f)$	Linearity		
$s_1(t)s_2(t)$	\Leftrightarrow	$S_1(f) * S_2(f)$	Convolution		
S(t)	\Leftrightarrow	s(-f)	Duality		
s(t- au)	\Leftrightarrow	$S(f)e^{-j2\pi f au}$	Time shift		
$s(t)e^{-j2\pi f_0 t}$	\Leftrightarrow	$S(f+f_0)$	Frequency shift		
$s(t)\cos(2\pi f_0 t)$	\Leftrightarrow	$\frac{1}{2}[S(f-f_0)+S(f+f_0)]$	Modulation		
s(at) (for any real $a \neq 0$)	\Leftrightarrow	$\frac{1}{ a }S\left(\frac{f}{a}\right)$	Time scale		
LOPE3202: Communication Systems				10/18/2017	22

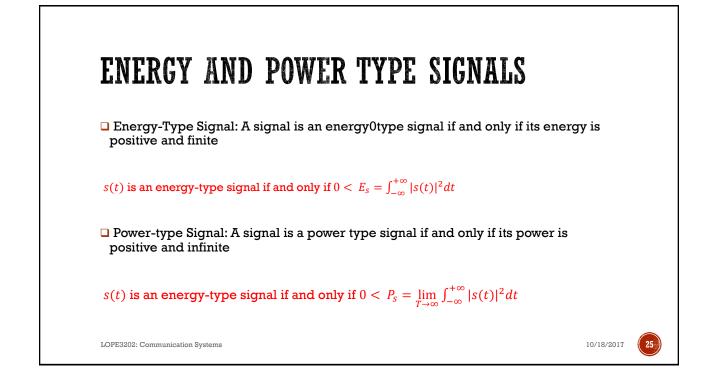


TIME AND FREQUENCY SIGNAL

- □ If the time-domain description of a signal is changed, then the frequency domain signal is changed in inverse manner. Hence, the arbitrary specifications of a signal cannot be performed in both time and frequency signal, but exclusively in one domain either time or frequency.
- □ If the <u>**FT**</u> of a signal in frequency domain has a finite band (zero outside the finite band), then the signal defined as <u>strictly limited in frequency</u>. The time domain in this case will be <u>indefinitely</u>.
- If the <u>IFT</u> of a time domain signal has a finite band (zero outside the finite band), e.g. square pulse, then the frequency domain signal is extent to infinity. This type of signals known as <u>strictly limited in time.</u>
- Signals can be **EITHER** band limited **OR** time limited.

LOPE3202: Communication Systems

24



ENERGY AND ENERGY SPECTRUM

Energy of energy-type signal:

$$\begin{split} E_{s} &= \int_{-\infty}^{\infty} |s(t)|^{2} dt = \int_{-\infty}^{\infty} s(t)s^{*}(t)dt = \int_{-\infty}^{\infty} s(t) \left[\int_{-\infty}^{\infty} S^{*}(f)e^{-j2\pi ft} df \right] dt \\ &= \int_{-\infty}^{\infty} S^{*}(f) \left[\int_{-\infty}^{\infty} s(t)e^{-j2\pi ft} dt \right] df = \int_{-\infty}^{\infty} S^{*}(f)S(f) df = \int_{-\infty}^{\infty} |S(f)|^{2} df \\ &= \int_{-\infty}^{\infty} U_{s}(f) df \end{split}$$

Parseval's Theorem: $E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt = \int_{-\infty}^{\infty} |S(f)|^2 df$

 $\Box \text{ Energy Spectrum: } U_s(f) \triangleq |S(f)|^2$

LOPE3202: Communication Systems

10/18/2017

