

LECTURE OUTLINES

- Why Digital?!!
- Sampling and Reconstruction of Continuous Time Signals
- The Sampling Theorem
- Quantization of Continuous Amplitude Signals
- Coding Process

WHY DIGITAL?!

Working with digital is more accrue in determination of signal processor:

Digital: Provides higher tolerance and control of accuracy requirements

Analog: In the designing process of system components, analog systems is very difficult to control the accuracy of analog signal processing

- \triangleright Digital signals can be stored without loss, easy to transport between devices, and ability of processing signals remotely in Labs compared to analog signals.
- \triangleright The implementation of hardware devices in digital systems are less expensive compared to analog devices.

1

SAMPLING OF ANALOG SIGNAL

Consider the following CT signal:

 $x_a(t) = A \cos(2\pi F t + \theta)$

The sampled version of the signal at a sample rate of $F_s = 1/T$:

$$
x_a(nT) = A\cos(2\pi F nT + \theta) = A\cos(\frac{2\pi Ft}{F_s} + \theta)
$$

Comparing the above equation with the discrete time equation:

$$
x(n) = A\cos(2\pi f n + \theta)
$$

LOPE3203: Communication Systems 12/12/2017 **9**

SAMPLING OF ANALOG SIGNAL

We found a relation between the frequency variables (F) and (f) :

$$
f = \frac{F}{F_s}
$$

 This relation is known as the normalized frequency which describe the frequency variable (f) . This indicates that we can only specify the value of (F) in hertz if, and only if, F_s (sampling frequency) is known.

2

- We know that the range of (F) : $-\infty < F < \infty$
- In discrete-time signals the situation is different: 1 $\frac{1}{2} < f < \frac{1}{2}$
- Substituting (F) : 1 $rac{1}{2T}$ or $rac{-F_s}{2}$ $\frac{F_s}{2} \leq F \leq \frac{1}{27}$ $rac{1}{2T}$ or $rac{F_s}{2}$ 2

EXAMPLE

- Consider the following signals:
	- $x_1(t) = \cos[2\pi (10)t]$ and $x_2(t) = \cos[2\pi (50)t]$
- We sampled both signals at a sample rate of $F_s = 40$ Hz, the resultant signals are:

 $x_1(t) = \cos \left[2\pi \left(\frac{10}{40} \right) \right]$ $\left[\frac{10}{40}\right]n\right] = \cos\frac{\pi}{2}$ 2 *n* and $x_2(t) = \cos \left[2\pi \left(\frac{50}{40} \right) \right]$ $\left[\frac{50}{40}\right]n\right] = \cos\frac{5\pi}{2}$ $\frac{\pi}{2}n$

- **· Using identities:** 5π $\frac{3\pi}{2}n = \cos\left(2\pi n + \frac{\pi n}{2}\right)$ $\left(\frac{\pi n}{2}\right) = \cos \frac{\pi n}{2}$ 2 **APROBLEM ARISED??**
- Both sampled signals $x_1(n)$ and $x_2(n)$ are identical and indistinguishable fro each other. This relates to adding an ambiguity of whether this sample is belongs to $x_1(t)$ or $x_2(t)$. Since this ambiguity is raised, we say that the 50-Hz frequency is *aliased* with 10-Hz.

THE SAMPLING THEOREM

- The ambiguity of signals due to sampling can be eliminated and the original signal reconstructed without any aliasing by selecting the sample rate $F_s = \frac{1}{T}$ $\frac{1}{T} = \frac{F_s}{2}$ $rac{r_S}{2}$.
- Knowing that any signals above or below the sampling rate will result in aliasing problem and no further steps can be taken to reconstruct again.
- To avoid aliasing, we have to select a sampling rate sufficiently high. (Higher than the highest frequency components of the original signal.

$$
F_s \ge 2F_{max} \qquad \qquad \text{or} \qquad \qquad F_s \ge 2B
$$

This condition ensures that all signals can be reconstructed without any ambiguity.

LOPE3203: Communication Systems **12/12/2017 16**¹⁶

- The process of converting the discrete time, continuous amplitude signal into a discrete – time, discrete – amplitude (fully digital) signal by expressing each sample with a finite set of values or digits (binary digits) is called *quantization.*
- a companion with quantization process, non accurate representing of the continuous - amplitude of the quantized signals caused an error known as *quantization error or quantization noise.*
- If we denote for the signals at the output port of the quantizer $Q[x(n)] = x_q(n)$, hence, the quantization error:

$$
e_q(n) = x_q(n) - x(n)
$$

VARIOUS N-BITS QUANTIZATION

- Round-off cannot be recovered
- As the number of bits increases, the amount of round-off error decreases.
- The application determines the number of bits to use in the ADC:
	- \triangleright Telephone quality speech: $8 bits$
	- Music: 16 bits