Computer Applications

MATLAB Windows

We have already described the MATLAB Command Window and the Help Browser, and have
mentioned in passing the Command History window, Current Directory browser, Workspace browser, and
Launch Pad. These, and several other windows you will encounter as you work with MATLAB, will allow
you to: control files and folders that you and MATLAB will need to access; write and edit the small
MATLAB programs (that is, M-files) that you will utilize to run MATLAB most effectively: keep track of
the variables and functions that you define as you use MATLAB; and design graphical models to solve
problems and simulate processes. Some of these windows launch separately, and some are embedded in the
Desktop. You can dock some of those that launch separately inside the Desktop (through the View: Dock
menu button), or you can separate windows inside vour MATLAB Desktop out to your computer desktop by
clicking on the curved arrow in the upper right.

Tvping in the Command Window

Click in the Command Window to make it active. When a window becomes active, its title bar
darkens. It is also likely that your cursor will change from outline form to solid, or from light to dark, or it
may simply appear. Now you can begin entering commands [1].

T [=]

Eile Edt Yiew ‘Web Window Help

L& oo o W 7 Curent Dvschory [0 matatstt 2nnimnd2 =l J C?_mmand
- Window

o ol mATLAD

+ 43‘_-1"”” Hazh Toolbox Ta get started, select "MATLAD Help™ Cica the Help aenu.

+- W Sisulink o |

+- U TysvenBuild to Simulink Teanslavor

i| | vaunenpsg [Worspace |

T | =

1] v | command istory [Curont Directory] 1 .
Ready |

Figure 1-1: A MATLAB Desktop

Computer Applications

Input/output of Data from MATLAB Command Window

MATLAB remembers all input data in a session (anything entered through direct keyboard input or
running a seript file) until the command “clear()’ is given or you exit MATLAB. One of the many features of
MATLAB is that it enables us to deal with the vectors/matrices in the same way as scalars. For instance, to
input the matrices/ vectors,

.4:[]' h] H=|:—{|\ c=[1 —2 3 —4]

type in the MATLAB Command window as below:

[

n

>>A=[123:456]

A=123
456
>>B =[3:-2:1]: %put the semicolon at the end of the statement to suppress the result printout onto the screen
>>C=[1-23 4]

At the end of the statement, press <Enter> if you want to check the result of executing the statement
immediately. Otherwise, type a semicolon *:" before pressing <Enter> so that your window will not be
overloaded by a long display of results [2].

Arithmetic Operations

+ Addition

Z Subtraction
Multiplication

- Array multiplication

A Left division

- Array left division
Right division

-/ Array right division

2 Matrix or scalar raised to a power
~" Array raised to a power
Complex conjugate transpose

~' Real transpose

[3]

Computer Applications

Introduction to Vectors in Matlab

This is the basic introduction to Matlab. Creation of vectors is included with a few basic operations.
Matlab is a software package that makes it easier for you 1o enter matrices and vectors, and manipulate
them. Almost all of Matlabs basic commands revolve around the use of vectors. To simplify the
creation of vectors, you can define a vector by specifying the first entry. an increment, and the last
entry. Matlab will automatically figure out how many entries you need and their values. For example,
to create a vector whose entries are 0, 2, 4, 6, and 8, you can type in the following line:

0 2 4 6 &

Matlab also keeps track of the last result. In the previous example, a variable "ans" is created. To look
at the transpose of the previous result, enter the following:

== ans'

s =

Co xR ba

Ta be able to keep track of the vectors you create, you can give them names. For example, a row vector
v can be created:

=== [9:1“8}

ans =

s A I)

MNote that in the previous example, if vou end the line with a semi-colon, the result is not displayed.
This will come in handy later when you want to use Matlab to work with very large systems of
equations. Matlab will allow you to look at specific parts of the vector. If you want to only look at the
first three entries in a vector you can use the same notation you used to create the vector:

[4]

Computer Applications

1. Solvino Matrix Equations Using Matrix Division

If A is a square, nonsingular matrix, then the solufion of the equation

Ax=b ism=A_1!l. Matlab 1mplements this operation with the backslash
operator:

2.

== A =rand (3. 3)

A=

0.2190 0.6793 05194
0.0470 09347 0.8310
0.6789 0.3835 0.0346

»>»b=rand (3, 1)
b=

0.0535

0.5297

0.6711

e Y = ‘A\:h
y =
-159.3380
314.8625
-344.5078

== A¥x-b
ans =
1.0e-13 #
-0.2602
-0.1732
-0.0322

A'b 1s (mathematically) equivalent to multiplying b on the left by A?
(however, Matlab does not compute the inverse mafrix: instead it solves the
linear system directly).

Vectorized functions and operators
Matlab has many comunands to create special matrices; the following

conunand ereates a row vector whose components increase arithmetically:

>

~t=1:5

t=
1 2 3 4 5

The components can change by non-unit steps:
==x=0.1:1
x =
Columuns 1 through 7
0 01000 02000 03000 04000 05000 0.6000
Columns 8 through 11
0.7000 0.8000 05000 1.0000

> linspace(0.1.11)

Computer Applications

== eye(2.3)
ans =
1 0 0
0 1 0
== diag(2.3)
ans =
o o o 2
0 0 0]]
] 0] 0]
o o o 0
== diag(2)
ans =
2

5. formatting display

format

format short 3.1416

format short e 3.1416e+00

format long 3.14159265358979

format long ¢ 3.141592653589793e+00

6. Conditionals and loops
Matlab has a standard if-elseif-else conditional: for example:
== t=rand(1):;

ift =075
5s=0;
elseif t < 0.25
s=1:
else
§ = 1-2%(t-0.25):
end
-5
-
4]
=
t=
0.7622
The logical operators in Matlab are <, =, <=, == == (logical equals),
and -—= (not equal). These are binary operators which return the values 0 and 1
(for scalar arguments):
e Y
ans =
1
= 53
ans =

[6]

Computer Applications

0
S 5==3
ans =
0
Thus the general form of the if statement is
if exprl
statements
elseif expr2
statements
else
statements
end

Matlab provides two types of loops, a for-loop and a while-loop. A for-
loop repeats the statements in the loop as the loop index takes on the values in
a given row vector:

Syrrrax:
FOR J=1: N,
FOR I=1: N,
AL = L/(I+J-1):
END
END

Example
== for1=1:4
disp(i*2)
end

— M e =

Syrrrax:
WHILE expression
statements
END
Example
The while-loop repeats as long as the given expression is true
(nonzero):
e il I
== while 1+x = 1
X =x/2;
end
e
x =
1.1102e-16

[7]

Computer Applications

Graphics

MATLAB can produce planar plots, images, and 3-D mesh surface plots.

Planar plots
The plot command creates linear x-y plots: 1f x and v are vectors of the same length. the command
plot(x.y) apens a graphics window and draws an x-y plot of the elements of x versus the elements of ».

You can, for example, draw the graph of the sine function over the interval -4 to 4 with the following

commands:

x=-4:.01:4;
y = sin(x);

plot(x.y)

As a second example. we will draw the graph of a exponential function:

x=-1.5:.01:1.5;
v = exp(-x."2);

plot(x.y)

Plots of parametrically defined curves can also be made. for example.

t=0:.001:2%pi;
x=c0s(3*1):
y=sin(2*1);
plot(x.y):

grid;

[8]

Computer Applications

The comumand grid will place grid lines on the current graph. The giaphs can be given titles, axes

labeled and text placed within the graph with the following commands which take a string as an

argument.
title graph title
xlabel x-axis label
vlabel y-axis label
stext interactively-positioned text
text position text at specific coordinates

For example, the command hitle('Best Least Squares Fit'}| gives the graph a title. The comumand

gtext('The Spot") allows a mouse or the arrow Keys to position a crosshair on the graph. at which the

text will be placed when any key 1s pressed.

By default. the axes are auto-scaled. This can be overridden by the command axis. If ¢ =
[xrmain, xmax, vimin,vimax] is 8 4-element vector, then axis(c) sets the axis scaling to the prescribed limits.
By itself, axis freezes the current scaling for subsequent graphs; entering axis again returns to auto-
scaling. The comunand axis('square’) ensures that the same scale is used on both axes. Two ways to

make multiple plois on a single graph are illustrated by

x=0:.01:2%p1;
v1=sin(x):
y2=sin{2*x);
y3=sin{4*x);
plot(x.¥1.y2.¥3)

By forming a matrix ¥ containing the functional values as columns

x=0:..01:2%pi:
Y=[sin(x)" sin{2*x), sin(4*x)'];

plot(x.Y)

Another way 1s with the hold command. The command hold freczes the current graphics screen so that

subsequent plots are superimposed on it. Entering hold again releases the "hold". The conmmands hold

on and hold off are also available.

x=0:.01:2%p1;
y1=sin(x);
y2=sin{2*x),
y3=sin(4*x);
plot(x.v1) :
hold
plot(y1.x)

[°]

Computer Applications

One can override the default linetypes and pointtypes. For example.

x=0..01:2%p1;

v1=sin{x):

v2=sin{2*x):

y3=sin(4*x):
plot(x.yl,-"xy2,"" x.y3,*)

Renders a dashed line and dotted line for the first two graphs while for the third the svmbol + is placed
at each node. The line- and mark-type are:
v Line types: dashed(--). dotted(:). dash dot(-.). and the default solid(-)
Z Mark types: point(). plns(+). star(*), circle(o). x-mark(x). square(s). diamond(d). up-
triangle(v), down-triangle(™), left-triangle(<), right-triangle(>). pentagram(p).
hexagram(h)
%+ Colors: yellow(y). magenta(m). cyan(c). red(r). green(g). white(w). black(k). and the default
blue(b)

The conunand subplot can be used to partition the screen so that up to four plots can be viewed

sinmultaneously.

Application Examples

Examplel:

L=0:0.1:60:

m=0.25;
Po=0.01.*exp(-m.*L/10);
plot(L.Po)

grid on
xlabel('Distance(Km)")
ylabel(‘power(w)")

[10]

Computer Applications

x 107

=
5 6
g
5
1 \\ ~
3 \
%0 10 20 30 40
Distance(km)
Figurel-2 plotting of examplel
Example2:
x=[0 p1/10 2*pi1; pi -pi 3*pi]
y=tan(x)
plot(x.y)
grid on
0.35
03 [
|llll
/
i
0.25 7
I
!
0.2 5
!
/
f
0.15 y
|lll.
01 A
|llll
/
f
0.05——
|llll
!
D !
0.05
-4 2 0 2 4 i

[11]

Computer Applications

7. Scripts and functions

A script 1s simply a collection of Matlab commands in an m-file (a text file
whose name ends 1 the extension .an"). Upon typing the name of the file
(without the extension). those commands are executed as if thev had been entered
at the keyboard. The m-file must be located mn one of the directories i which
Matlab automatically looks for m-files; a list of these directories can be obtained
by the command path. One of the directories in which Matlab always looks is the
current working directory: the command ecd identifies the curent working
directory, and c¢d newdir changes the working directory to newdir.

For example, suppose that
x = 0:2%pr/N:2%p1:
v = sin(w*x);

plot(x.,y)
Then the sequence of commands
- N=100:w=5;
== plotsin

Produces Figure 3.

ail '(fﬂ' \ r’n‘« N

b4
.
e
e
—

1 \d \ ‘I‘J X 'L;

E *

z a a E=

Figure 3; Effect of an m-file

As this example shows. the commands in the script can refer to the
variables already defined in Matlab, which are said to be in the global
workspace (notice the reference to N and w in plotsinm). Much more
powerful than scripts are functions, which allow the user to create new Matlab
commands. A function is defined in an m-file that begins with a line of the
following form:

Junction foutputl,oniput2,...] = command _name(inpuil,inpui2,...)

The rest of the m-file consists of ordinary Matlab commands
compuiing the values of the outputs and performing other desired actions. It is
important to note that when a function is invoked, Matlab creates a local
workspace. The conunands in the function cannot refer to variables from the
global (interactive) workspace unless they are passed as inputs. By the same
token, variables created as the function executes are erased when the execution
of the function ends, unless they are passed back as outputs.

L*=1

Computer Applications

Here is a sunple example of a function; it computes the function
F(x) = min(x?) . The following commands should be stored in the file fen.m

(the name of the function within Matlab is the name of the m-file, without the
extension):

function y = fen(x)

y = si(x."2):

(Note that I used the vectorized operator. * so that the function fen is
also vectorized.) With this function defined. I can now use fen just as the built-
in function sin:
== X = (-pi:2%pi/100:pi)":
==y = sin(x);
==z = fen(x):
== plot(x,v.x.,2)
= gl]d

The graph 1s shown 1 Figure 4. Notice how plot can be used to graph
two (or more) functions together. The computer will display the curves with
cdifferent line types--different colors on a color monitor, or different styles (e.g.
solid versus dashed) on a black-and-white monitor. See help plot for more
information.

i

-\._"'_:_ﬁi

._...i....i.....t.-.-.;_.-.

1] = 4
Figure 4: Two curves graphed together

Notice from Figure 4 that #(x) = min(x") has a root between 1 and 2
(of course, this root is).

8. Putting several graphs in one window

The subplot command creates several plots in a single window. To be
precise, subplot (m.n.i1) creates mn plots, arranged in an array with m rows and n
columns._ It also sets the next plot command to go to the i™ coordinate system
(counting across the rows). Here is an example (see Figure 3):
== 1= (0:1:2%p1)";
== subplot(2.2,1)
== plot(t.simn(t))
== subplot(2.2,2)

Computer Applications

=== plot(t,cos(1))

== subplot(2,2,3)
=== plot(t,exp(t))

=== subplot(2.2.4)
> plog(t_. 1./(1+t.72))

1

0.2 / 1 0=
Q 1 o
-0.5 1 0.5

o 2 4 B g 0 Z 4 L] -]
500 1
400 1 o0&
300 1 05
200 1 02
mnn 1 o

_ . 2 H--'-"."‘-—'—.
nﬂ 2 4] & ﬂﬂ 2 q B 8

Figure 5: Using the subplot command

9. 3D plots

In order to create a graph of a surface m 3-space (or a contour plot of a
surface), 1t 1s necessary to evaluate the function on a regular rectangular grid.
This can be done using the meshgrid command. First, create 1D vectors
describing the grids in the x- and v-directions:
==X = (0:2%p1/20:2%p1)';
==y = (0:4%p1/40:4%p)';

Next, “spread” these grids mto two dinensions using meshgrid:
== [XUY] = meshand(x,y);

The effect of meshgrid is to create a vector X with the x-grid along
each row, and a vector Y with the y-grid along each columm. Then, using
vectorized funciions and/or operators. 1i 1s easy to evaluate a function z =
f(x.y) of two variables on the rectangular grid:
==z = cos(X).Fcos(2¥Y):

Having created the matrix containing the samples of the function, the
surface can be graphed using either the mesh or the surf commands (see
Figures 6 and 7, respectively):
== mesh(x,y,z)
== surf(x.y.z)

Computer Applications

a o
Figure 6: Using the mesh command

=S

15
5

0 o
Figure 7: Using the surf command
In addition, a contour plot can be created (see Figure 8):

== contour(x.y.z)

o1 = B a 4 =] a
Figure 8: Using the contour conunand
Example

== subplot(2.2.1)
== mesh(x.y.z)
== subplot(2.2.2)
== surf(x.y.z)

== subploi(2,2.3)
== surfe(x.,y,z)
== subplot(2.2.4)
== contour(x.y.z)

[15]

Computer Applications

DOt a g
o i mul'
e 1'r.\umm"nnlhﬁ'“‘"
20 ; o

Figure 9: surface plots with mesh. surf, meshe, and contour

Example
== subplot(2.2.1)
= hast(x)

: '.--baltx}

== subplot(2,2,3)

== pie(x)

== subplot(2.2.4)
= waterfall(x)

Figure 10: plotting by using hist, bar, pie. and waterfall

[16]

Computer Applications

STEM Function
STEM Discrete sequence or "stem” plot. STEM(Y) plots the data sequence Y as stems from the x axis
terminated with circles for the data value. If Y 15 a matrix then each column is plotted as a separate series
STEM(X.Y) plots the data sequence Y at the values specified in X. STEM(....'filled") produces a stem plot
with filled markers. STEM(...,'LINESPEC") uses the linetype specified for the stems and markers. See
PLOT for possibilities. STEM(AX....) plots into axes with handle AX. Use GCA to get the handle to the
current axes or to create one if none exist. H=STEM(...) returns a vector of stem series handles m H, one
handle per column of datainY.

Examples

Single Series of Data

This example creates a stem plot representing the cosine of 10 values linearly spaced between 0 and 27 Note
that the line style of the baseline is set by first getting its handle from the stemseries object's BaseLine
property.

t=linspace(-2*p1,2 *p1,10):

h= stem(t,cos(t).'fill','--"):

set(get(h, BaseLine'), LineStyle',"
set(h,'MarkerFaceColor', red)

—

1 T T T T T T T

Two Series of Data on One Graph
The following example creates a stem plot from a two-column matrix. In this case, the stem function creates
two stemseries objects, one of each column of data. Both objects' handles are returned in the output argument

h.

h(1) 1s the handle to the stemseries object plotting the expression exp(-.07*x). *cos(x).
h(2) 15 the handle to the stemseries object plotting the expression exp(.05*x).*cos(x).
o« x=0:25;

o y=[exp(-.07*x).*cos(x);exp(.05%x). *cos(x)]":

» h=stem(x,y):

o set(h(1), MarkerFaceColor', blue')

o set(h(2), MarkerFaceColor''red', Marker','square')

[17]

Computer Applications

Three-Dimensional Stem Plots
stem3 displays 3-D stem plots extending from the xy-plane. With only one vector argument, the stems are
plotted in one row at x =1 or y = 1, depending on whether the argument is a column or row vector. stem3 is
intended to display data that you cannot visualize in a 2-D view.

Example — 3-D Stem Plot of an FFT
Fast Fourier transforms are calculated at points around the unit circle on the complex plane. It is interesting

to visualize the plot around the umit circle. Calculating the unit circle
th=(0:127)/128*2%p1;

x = cos(th);

y = sin(th):

and the magnitude frequency response of a step function. The command

f= abs(fft(ones(10,1),128)):

displays the data using a 3-D stem plot, terminating the stems with filled diamond markers:
stem3(x,y.f.'d\ "fill")

view([-65 30])

Magnitude Frequency Response

e
—"
e
|

Amplitude

-1 -1 Real

Computer Applications

Fourier Transform
A theorem of mathematics says. roughly, that any function can be represented as a sum of
sinusoids of different amplitudes and frequencies. The Fourier transform is the mathematical
technique of finding the amplitudes and frequencies of those sinusoids. The Discrete Fourier
Transform (DFT) is an algorithm that calculates the Fourier transform for numerical data.
The Fast Fourier Transform is an efficient implementation of the DFT. The following
functions are available in mat lab to do Fourier transforms and related operations:

fft Omne-dimensional fast Fourier transform

ffe2 Two-dimensional fast Fourier transform

fftn N-dimensional fast Fourier transform
fftshift Move zeroth lag to centre of transform

ifft Inverse one-dimensional fast Fourier transform
ifft2 Inverse two-dimensional fast Fourier transform
ifftn inverse N-dimensional fast Fourier transform
abs Absolute value (complex magnitude)

angle Phase angle

cplxpair Sort complex numbers into complex conjugate pairs
nextpow2 Next power of two
unwrap Correct phase angles

The FFT of the column vector
yv=[20102110]7%;
is

>> Y = ffu(y)

Y =
7.0000
-0.7071+ 0.70711
2.0000- 1.00001
0.7071+ 0.70711i
5.0000
0.7071- 0.7071i
2.0000+ 1.00001
-0.7071- 0.70711

The first value of Y is the suwm of the elements of y, and is the amplitude
of the “zero-frequency’”, or constant, component of the Fourier series.
Terms 2 to 4 are the (complex) amplitudes of the positive frequency
Fourier components. Term 5 is the amplitude of the component at the
Nyquist frequency, which is half the sampling frequency. The last three
terms are the negative frequency components, which, for real signals, are
complex conjugates of the positive frequency components.

The fftshift function rearranges a Fourier transform so that the
negative and positive frequencies lie either side of the zero frequency.

Companion M-Files Feature 4 The function fftfregq gives
you a two-sided frequency vecior for uwse with fft and fftshift.
For example, the frequency wector corresponding to an S-point
FEFT assurmning o Nyguist frequency of 0.5 is

>> fftfreq(.5,8)"
Ans =

[19]

Computer Applications

-0.5000
-0.3750
-0.2500
-0.1250
0
0.1250
0.2500
0.3750

We combine fftshift and fftfreq to plot the two-sided FFT:

plot (fftfreq(.5,8),fftshift(abs(Y)))
axis([-.5 .5 0 7])
Zeroaxes

-05 0 05

Let us do a slightly more realistic example. We simulate some data
recorded at a sampling frequency of 1 kHz, corresponding to a time step
dt = 1/1000 of a seccond. The Nyquist frequency is, therefore, 500 Hz.
Suppose there is a 100 Hz sinusoid contaminated by noise. We simulate
the data, calculate the FFT, and plot the results as follows:

dt = 1/1000; 5]
t = dt:dt:200%dt;
sine = sin(2%pi*100%t);

y = sine + randn(size(t));
Y = £ft(y);
f = fftfreq(500,length(Y));

Computer Applications

fourier
Fourier integral transform
Syntax
F = fourier(f)
F = fourter(f.v)
F = fourter(fu.v)
Description
F = fourier(f) is the Fourier transform of the symbolic scalar f with default independent variable x.
The default return 1s a function of w. The Fourter transform is applied to a function of x and returns a
function of w.
If f=f(w), fourier returns a function of t.

Laplace transform

laplace(F)

laplace(F, 1)

laplace(F, w. z)

L =laplace(F) is the Laplace transform of the scalar symbol F with default independent variable t.

The default return is a function of s. The Laplace transform is applied to a function of t and returns a function
of s.

Example

syms a f;
fl=t"4:
f2=1/squt(t):
B3=exp(a™)

L1 =laplace(fl)
L2 =laplace(f2)
L3=laplace(f3)

Bessel Functions
BESSEL Bessel functions of various kinds.
Bessel functions are solutions to Bessel's differential
equation of order NU:
2 2 2

- -

xFy"+ x¥fy+(x-m)ty=0

There are several functions available to produce solutions to
Bessel's equations. These are:

BESSELI(NU.,Z) Bessel function of the first kind
BESSELY(NU.Z) Bessel function of the second kind
BESSELINU.Z) Modified Bessel function of the first kind
BESSELK(NU.Z) Modified Bessel function of the second kind
BESSELH(NU.K.Z) Hankel function

Computer Applications

Examples

Example 1
format long
z=(0:0.2:1)"
bessely(1,z)

ans =
-Inf
-3.32382498811185
-1.78087204427005
-1.26039134717739
-0.07814417668336
-0.78121282130029

Example2
format long
z=(0:0.2:1)"
besseli(1,z)

Examples 3
x=0:0.1:10:
for n=1:10
y=besselj(x.n):
plot(x.y)
grid on
hold on
end

0.8

06

04

K=

[/ AN
[/ A/

[’ X)

]
S O

[
=]
L
.
(i)
=y

-
(==

[d=]

Computer Applications

Integration

INT Integrate

INT(S) 1s the indefinite integral of S with respect to its symbolic variable as defined by SYMVAR. S1isa
SYM (matrix or scalar). If S is a constant, the integral 1s with respect to 'x". INT(S,v) 1s the indefinite
integral of S with respect to v. v 1s aalar SYM.

INT(S,a,b) 15 the definite integral of S with respect to its symbolic variable from a to b. a and b are each
double or symbolic scalars. INT(S,v.a.b) 1s the definite integral of S with respect to v froma to b.

Examples:
syms x x1 alphau t;
A = [cos(x*t),sin(x*t):-sin(x*t),cos(x *t)]:

int(1/(1+x"2)) returns atan(x)
int(sin(alpha*u),alpha) returns -cos(alpha*u)u
int(besselj(1.x),x) returns -besselj(0.x)
int(x1*log(1+x1),0.1} returns 1/4

mnt(4*x*t.x,2,51n(t)) returns -2*t*cos(1)"2 - 6%t
nt([exp(t),exp(alpha*t)]) returns [exp(t), exp(alpha*t)/alpha]
int(A.t) returns [sin(t*x)/x, -cos(t*x)/x]

[cos(t*x)/x, sin(t*x)/x]

DIFF Difference and approximate derivative.
DIFF(X), for a vector X, 1s [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)].
DIFF(X), for a matrix X, 1s the matrix of row differences,
[X(2:n,) - X(1m-1.1)].
DIFF(X), for an N-D array X, 1s the difference along the first non-singleton dimension of X.
DIFF(X.N) is the N-th order difference along the first non-singleton dimension (denote it by DIM).
If N == size(X,DIM), DIFF takes successive differences along the next non-singleton dimension.
DIFF(X.N.DIM) 1s the Nth difference function along dimension DIM.
If N >= size(X,DIM), DIFF returns an empty array.

Examples:
h=.001:x=0:h:pi:
diff(sin(x."2))/h 1s an approximation to 2*cos(x."2).*x
diff((1:10).72) is 3:2:19
If X=[3750092]
then diff(},1.1)1s [-3 2 -3], diff(X.1.2) is[4-29-T],
diff(X,2.2) is the 2nd order difference along the dimension 2,
and diff{X,3.2) 1s the empty matrix.

Computer Applications

Simulink

Introduction

Simulink is a software package that enables you to model, simulate, and analyze systems whose outputs
change over time. Such systems are often referred to as dynamic systems. The Simulink software can be used
to explore the behavior of a wide range of real-world dynamic systems, icluding electrical circuits, shock
absorbers, braking systems, and many other electrical, mechanical, and thermodynamic systems. This section
explains how Simulink works.

Simulating a dynamic system is a two-step process. First, a user creates a block diagram, using the Simulink
model editor, that graphically depicts time-dependent mathematical relationships among the system'’s inputs,
states, and outputs. The user then commands the Simulink software to simulate the system represented by the
model from a specified start time to a specified stop time.

Block Diagram Semantics

A classie block diagram model of a dynamic system graphically consists of blocks and lines (signals). The
listory of these block diagram models is derived from engineering areas such as Feedback Control Theory
and Signal Processing. A block within a block diagram defines a dynamic system in itself. The relationships
between each elementary dynamic system in a block diagram are illustrated by the use of signals connecting
the blocks. Collectively the blocks and lines in a block diagram describe an overall dynamic system.

The Simulink product extends these classic block diagram models by introducing the notion of two classes of
blocks, nonvirtual blocks and virtual blocks. Nonvirtual blocks represent elementary systems. Virtual blocks
exist for graphical and organizational convenience only: they have no effect on the system of equations
described by the block diagram model. You can use virtual blocks to improve the readability of your models.

Computer Applications

Creating an Empty Model :: Creating a Model {Simulink®) Jarfile:H O Program 208 les MATLAB/R 20090/ help/toolbox/simulink. ..

Creating an Empty Model

To create an empty model, click the New buttan on the Library Browser's toolbar, or choose New from the library
window's File menu and select Medel. An empty model is created in memory and it is displayed in a new model editar

Ready 100 ! i lodeas i

Creating a Model Template

When you create a model, Simulink uses defaults for many configuration parameters. For example, by default new
models have a white canvas, the cdeds solver, and a visible toolbar If these or other defaults do not meet your needs,
you can use the Simulink software model construction commands described in Model Construction to write a function that
creates a model with the defaults you prefer. For example, the following function creates a model that has a green canvas
and a hidden toolbar, and uses the ode2 solver:

function new model (modelnams)

% MNEW MODEL Create a new, empbty Simulink model

& ﬁEMLMGDEL['MODELNAME'ﬁ creates & new model with
3 the namwe 'MODELNAME®., Without the 'MODELNAME'

3 arqument, the new model is named "my untitled®,

if nargin == 0
modelname = 'my_untitled’';
end

% create and open the model
open_systeninsw_systemi{modslname)) ;

% ==t defsult screen color
sat_parami{modelname, 'ScresnColor', Tgreen');

% et default solwver
set_parami{modelname, 'Solwver”,

odelT);

% st defsult toclbar wisibility
sat_parami{modelname, 'Toclbar', *off*);

% save the model
zave system(modelname]

lof2 (/0372011 09202 s

[25]

Computer Applications

Selecting Ohjects - Creating a Model (Simulink®) jar:file:/C Program ¥ 20F tles MATLAB/R 2009/ helptool box/simulink

Selecting Objects

On this page...

Selecting an Object
Selecting Multiple Objects

Selecting an Object

To select an object, click it. Small black square handles appear at the corners of a selected block and near the end
points of a selected line. For example, the figure below shows a selected Sine Wave block and a selected line.

L e
Sine Wawe

Vwhen you select an object by clicking it, any other selected cbjects are deselected

i Back ta T'DE
Selecting Multiple Objects

You can select more than one object either by selecting objects one at a time, by selecting objects ocated near each
other using a bounding box, or by selecting the entire model.

Selecting Multiple Objects One at a Time

To select more than one object by selecting each object individually, hold down the Shift key and click each object to be
selected, To deselect a selected object, click the abject again while helding down the Shift key

Selecting Multiple Objects Using a Bounding Box

An easy way 1o select more than one object in the same area of the window 1s to draw 2 bounding box around the
objects

1. Define the starting corner of a bounding bow by positioning the pointer at ane corner of the bax, then pressing and
holding down the mouse button. Motice the shape of the cursor.

+

[
[

Sine Ware
Sonpa

2. Drag the painter to the apposite camer of the box, A dotted rectangle enclosas the selected blocks and lines,

s
Y
|

Sine Ware

Hoope H
+
3. Release the mouse button, All blocks and lines at least partially enclosed by the bounding box are selected,
]
Sine Wirve Eoope
Selecting All Objects
lof2 04032011 0207 L=

[26]

Computer Applications

Aligning, Disteibuting, and Resizing Groups of Blocks Automatically @ .. jarifile//CyProgram®:20F iles/ MATLAB/R2000bhelptoolbox/simulink...

Aligning, Distributing, and Resizing Groups of Blocks Automatically

The model editor's Format menu includes commands that let you guickly align, distribute, and resize groups of blocks
To ahgn {or distribute or resize) a group of blocks:

1. Salect the blocks that you want to align.

LD untitled ®
File Edit View Simulation

-5/

Format Tools Help

B

L L]

Constant E§ mre{
_
-
-

Sain
e wﬂ% L e S ngeqs

i

One of the selected blocks displays empty selection handles. The model editor uses this block as the reference for
aligning the other selected blocks. If you want another block to serve as the alignment reference, click that black.

2. Select one of the alignment options from the editor's Fermat = Align Blocks menu (or distribution ophions from
the Format > Distribute Blocks or resize options from the Format > Resize Blocks menu). For example,
selecting Align Top Edges aligns the top edges of the selected blocks with the top edge of the reference block.

[™ untitied * : + _ o X
File Edit View Simulation Format Tools Help
DelES dBae oo giaiiiy

o =
1 B A1 o
L. I-‘:.>l L;)
Constani Ealn CogE
Ready ioeRe L dees

Provide fesdback aboad this nage

1of2 04032011 0911 e

Computer Applications

Starting Simulink Software = Simulink Basics {Simulink®)

1ol

Starting Simulink Software

Jarfile:C U Program e 20F iles MATLAR/R 20000 helptoolbox/simulink.

To start the Simulink sofiware, you must first star the MATLAB@ technical computing environment. Consult your

MATLAE documentation for more information. You can then start the Simulink software in two ways:

« On the toolbar, click the Simulink ican.

-

« Enterthe =inulinlk: command at the MATLAE prompt

The Library Browser appears. It displays a tree-structured view of the Simulink block libraries installed on your system,
You build models by sopying blocks fram the Library Browser into a model window (see Editing Blocks).

The Simulink library window displays icons representing the pre-installed block libranes. You can create models by
copying blocks from the library into a model window.

L] simubink Libeary Browser
i I e

O = =

le'a”ES

Commeanly Umed Blodks
i~ Conbriods
I Diseiritingitios
Disciete
ogic and Bit Operations
i Lookigp Tables
Math Operahon:
Modal Verification
b Modeiahide Utites
b Poite & Subepsheng
Signal Attributes
Sigral Routing
Sz
S ounces
U serDefinad Functices

:i Enter part of 3 block or library name

@ Comiencinly Llaed Blocks
!I Continuozs

IE Drizewibirinlies
an =y
H3

Logic: and Bit O perations

-

Libaane: Simulink | Search Resuks [none|]

e Adidiional Wath & Discrete &]
Hlogke Desniohon = coomnoan s o s 1
Commonly Used Blocks: i
i i
4
]

[.))
Note On computers running the Windows operating system, you can display the Simulink library window by
right-clicking the Simulink node in the Library Browser window,

[®] simuiink Basics

© 1984-200% The MathWorks, Inc. - Terms of Use - Patents - Trademarks - Acknowledgments

Provide faedback about this page

[28]

Cpening a Model []

04/03/2011 08:43 =

Computer Applications

Panning Block Diagrams @ Sumulink Basics {(Simulink®) jat:file: V0 Program® 20F les MATLAB/R 20090/ he lpy'toa bo/simulink.

Panning Block Diagrams

You can use your keyboard alone (see Model Viewing Shortcuts | or in combination with your mouse to pan model
diagrams that are too large ta fit in the Model Editor's window. To use the keyboard and the mouse. position the mouse
over the diagram, hold down the p or g key on the keyboard, then hold down the left mouse button,

Note ‘You must press and hold down the key first and then the mouse bution. The reverse does not work.

A pan cursor appears.

Pan curgor

File = Edit Wil Sirsiation

D &d&

Maving the mouse now pans the model dizgram in the editor window,

Provide feedback sbout this psge

[4] Zooming Block Diagrams Viewing Command History]

@ 15984-2009 The MathWorks, Inc. « Terms of Use « Patents - Trademarks « Acknowledgments

latl (/032011 08:55 =

[29]

Computer Applications

- EJ Simulink
2+ Commonly Used Blocks
23 Continuous
#+ Discontinuities
2| Discrete
*+ Logic and Bit Operations
2 Lockup Tables
2 Math Operations
2 Mode| verification
| Model-wide Utilities
2 Ports & Subsystems
%3 Signal Attributes
23 Signal Routing
2+ Sinks
2+ Sources
#3 User-Defined Functions
+ 2| Additional Math & Discrete
+ W RealTime Workshop
B Signal Pracessing Blockset
B simPower Systems

+

ri Eira

- Discrete

+

Bilice W%

F
‘1"
R

E3

~ Commonly Used Blocks
Conhruous

Discontirwities

Logic and Bit Operations
Lookup T ables

Math Operations

Model Veriication
Modelwide Utilities
Portz & Subsystems
Signal Athiibites

Signal Routing

Sinks
Sources

Uszer-Defined Functions

édditional Math & Discrete

'[Ea

+
+ W Simulink Extras -
Figure 1.4, The Simulink Library Browser
2
d_‘"f' dve
P dt” dt Ve
1,(1) 3 Z\\, dt jdr :
N4

-3

Figure 1.5. Block diagram for equarion (1.26)

[30]

Computer Applications

The Commonly Used Blocks Library

This is the first library in the Simulink group of libraries and contains the blocks shown below. In this
chapter, we will describe the function of each block included in this library and we will perform simulation
examples to illustrate their application [5].

Commonly UsedBlocks

@ @ B B8 | =

Ground Terminator < ST Scopa
]
})E jI7)t ,:\“_:
I
Eue Eus | AT Diernis Switch

Creator Selector

@ ’I>>’x= =t Jwol 3

Gain Product Fielatonal Logical Sawration
Crpermator Oparator

1 1 H. T=
e - B =
L = z1
Imtegranar Unit Delay Dizcrete- Time
It grator
Conmwert = In1 ot
Dam Type Conwersion Subsystam

Example 2.4

The model is shown in Figure 2.9 perfarms the multiplication (3 +4) x (4 +13) x (5 -]8). After
the Start simulation command is executed, it may be necessary to stretch the Display block hori-
zontally to read the result.

2+di
Gunsmnt‘l_|_.,

43— X —.—“ =00 + 125 |
Gonsmnt;l_. Display

=0 Product
Constant 3

Figure 2.9, Model for Example 2.4

[31]

Computer Applications

Example 2.5
The model is shown in Figure 2.10 performs the division (3 +j4)/(4 +j3).

Fudi L
Constant 1 X
ons . —w 086+ 006
e | Divide Display
Coms@nt 2

Figure 2.10. Model for Example 2.5

Example 2.6
The model of Figure 2.11 simulates the combined functions sin2t, —sin2t, and J.sinztcll into a

bus and displays all three on a single scope.

Sire Wave
e L]
Dermtie Scope
Ly 1
simaut
Itegrator
Bus To Workspace
Creator

Figure 2.11. Model for Example 2.6

Example 2.14
The model of Figure 2.28 simulates the ditferential equation

j
y dv

d_‘“f +A=E43ve = 300
df

subject to the initial conditions v.(0) = 0.5 and v'+(0) = 0.

The Constant 1 and Constant 2 blocks represent the initial conditions,

[32]

Computer Applications

Step

1

+
[—IH—}
+

Gan1 . U
g
Add o
Integrator 1
0 05
Constant 1

Constant 2
4

b

1

)‘Cls

Integrtor 2

Gain <|<
a

(3ain3

Fioure 2.28, Model for Example 2.14

[33]

Scope

Computer Applications

3.1 The Continuous-Time Linear Systems Sub-Library

The Continuous-Time Linear Systems Sub-Library contains the blocks described in Subsec-
tions 3.1.1 through 3.1.5 below.

3.1.1 The Integrator Block

1t
Z

Integrator
The Integrator block is described in Section 2.14, Chapter 2, Page 2-20.

3.1.2 The Derivative Block

Acduidt

D arvative

The Derivative block approximates the derivative of its input. The initial output for the block is
zero, The accuracy of the results depends on the size of the time steps taken in the simulation.
Smaller steps allow a smoother and more accurate output curve from this block. Unlike blocks
that have continuous states, the solver does not take smaller steps when the input changes rap-
idly. Let us consider the following simple examgple.

I ———
Example 3.1

We will create a model that will compute and display the waveform of the derivative of the func-
flon y = COs8%.

The model is shown in Figure 3.1, and the input and output waveforms are shown in Figure 3.2,

(.

Scopa

ﬁ\/’ I duidt

Sine Wanee Denvative Bus
Creator

Figure 3.1, Model tor Example 3.1

To convert the sine function in the Sine Wave block to a cosine function, in the Source Block
Parameters dinlog box we specify Phase = 1/2. As we know, the derivative of the cosine func-

tion is the negative of the sine function and this is shown in Figure 3.2. [5]

[34]

Computer Applications

Applications

The Series RLC Circuit with DC Excitation
Let us consider the series RLC circust of Figure 1.1 where the initial conditions are i;(0) = I,

ve(0) = Vp, and up(?) 1s the umt step function.” We waat to find an expression for the current i(f)
fort>0.

Vslig(1)
i(1) L
C

Figure 1.1. Series RLC Circuit

For thus circust

. oodi 1¢.
R1+L‘—1—t+Edet+Vo=vs t>0 (L.1)
and by differentiation
Rl 0% 459
atgf t

To find the forced response, we must first specify the nature of the excitation v, that 15, DC or AC.
If vg 18 DC (v =constant), the nght side of (1.1) will be zero and thus the forced response compo-
nent iy = 0. If vg 1s AC (vs = Vcos(@t+0), the nght side of (1.1) will be another sinusoid and
therefore i, = Icos(wt+¢). Since in this section we are concerned with DC excitations, the nght
side will be zero and thus the total response will be just the natural response.

The natural response 1s found from the homogeneous equation of (1.1), that 1s,

di A i_
Rdt+Ld;2+E‘ =0 (1.2)

The characteristic equation of (1.2) is

2 1
Ls +Rs+==10
C

[35]

Computer Applications

or
3 R 1
+os+— =
S+7S
from which
R, |R 1
SpSy=——% |——— 1.3
BT Ny TG (1)
We will use the following notations:
- - T Sa—
Su, g bkl sl
§) " i 14
« or Damping Resonant Beta Damped Natural
Coefficient Frequency Coefficient Frequency

where the subscopt s stands for senies circuit. Then, we can express (1.3) as

S35 = —Ost Jus-0p = —astPs if 05>wp (1.5)
or
[2 3 - 2 2
S},Sz = —asi (I)o—(ls = —asi(l)"s l_f (l)o)(ls (16)

Casel: If a§>w$, the roots 5; and 5, are real, negative, and unequal. This results in the over-
damped natural response and has the form

i(1) = ke +he’ (1.7)

Case II: If a; = o, the roots 5, and s, are real, negative, and equal This results in the critically
damped natural response and has the form

i(1) = e " (k +ky) (1.8)

Case III: If a)5> a_‘; , the roots 5; and 5, are complex conjugates. Thus 1s known as the underdamped
or oscillatory natural response and has the form

i,() = e-as'(k,cosconst+k3sinconst) = k,e-as'(cosmnstﬂp) (1.9)

A typical overdamped response 1s shown in Figure 1.2 where it is assumed that i,(0) = 0. Thus plot
was created with the following MATLAB code:

[36]

Computer Applications

t=0: 0.01: 6; ft=8.4.*(exp(~1)-exp(=6.*1)); plot(tft); grid; xlabel(t);...
ylabel(f(t)'); tittle('Overdamped Response for 4.8.* (exp(~t)—exp(~6.*1))")

Querdamped Resporee for 4.8 "lexpl) exp(-6. 1))

Figure 1.2. Typical overdamped response

A typical catically damped response 1s shown in Figure 1.3 where it 1s assumed that i,(0) = 0. This
plot was created with the following MATLAB code:

t=0: 0.01: 6; ft=420.*t.*(exp(-2.45.*1)); plot(tft); grid; xlabel('t);...
ylabel(*(t)'); title('Critically Damped Response for 420.*t.* (exp(~2.45.*1)))

Critivally Damped Response for 420, 4. "(wxp(2 46 1)

Figure 1.3. Typical crifically damped response

A typical underdamped response 1s shown in Figure 1.4 where 1t 1s assumed that i,(0) = 0. This
plot was created with the following MATLAB code:

[37]

Computer Applications

t=0: 0.01: 10; ft=210.*sqrt(2).*(exp(~0.5.*1)).*sin(sqrt(2).*1); plot(t,ft); grid; xlabel('t)....
ylabel(f(t)); title(Underdamped Response for 210.*sqrt(2).* (exp(=0.5.*1)).*sin(sqrt(2).*t)’)

Uncbrdarnpe d Pesponss for 210, %arl2). e (0.6,). winfserd @) 1)
i) A} LS T

T T
i V

L] B

1)

Figure 1.4. Typical underdamped response

(38]

Computer Applications

Check with MATLAB-:

Syms t; % Define symbolic variable t

R=0.5; L=10" (-3); C=100*10 "~ (-3)/6;% Circuit constanis

y0=115*exp(—200*1)—110*exp(-300*1); % Let solution i(f)=y0

y1=diff(y0); % Compute the first derivative of y0, i.e, di/dt

y2=diff(y0,2): % Compute the second derivative of y0, i.e, di2/di2
% Substitute the solution i(t), i.e., equ (1.17)
% into differential equation of (1.11) to verify
%% that correct solution was obtained.
9% We must also verify that the initial
% conditions are satisfied

y=y2+500*y1+60000*y0;

i0—115*exp(—200*0)—110*exp(—300*0);

vC0=—R*i0—L*(-23000*exp(—200*0) +33000*exp(—300*0)) +15:

fprintf(' yn’;...

disp('Solution was entered as y0 = "); disp(y0);...

disp(1st derivative of solution is y1 =): disp(y1);...

disp(’2nd derivative of solution is y2 = "); disp(y2);...

disp('Differential equation is satisfied since y = y2+y1+y0 =): disp(y);...

disp("1st initial condition is satisfied since att = 0, i0 = '); disp(i0);...

disp('2nd initial condition is also satisfied since vC+vL+vR=15 and vC0 = ;...

disp(vCO0);...

fprintf(' \n’)

[4].

[39]

Computer Applications

References

[1] B. Hunt, R. Lipsman, J. Rosenberg, K. Coombes,] Osborn and G. Stuck, “A Guide to MATLAB for
Beginners and Experienced Users”, John Wiley & Sons,2001.

[2] Won Young Yang, Wenwu Cao, Tae-Sang Chung and John Morris, “APPLIED NUMERICAL
METHODS USING MATLAB”, John Wiley & Sons. 2005.

[3] Andrew Knight, " Basies of MATLAB and Beyond". CRC Press LLC, 2000.

[4] Steven T. Karris, "Circuit Analysis IT with MATLAB and Applications", Orchard Publications, 2003.

[5] Steven T. Karris, "Introduction to Simulink ® with Engineering Applications", Orchard Publications,
2006.

[6] K.D. Moller, "Learning by Computing, with Examples Using Mathcad®, Matlab®, Mathematica®,
and Maple®", Springer Science+Business Media, LLC, 2007.

[40]

