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Textbooks:  

1. Digital Design, Morris M. Mano, (3rd Edition), Prentice Hall, 2002  

2. Digital Fundamentals, Thomas L. Floyd, (9th Edition), Prentice Hall, 2006  

3. Microprocessor Architecture, Programming, and Applications with the 8085, by 

R. Gaonkar. 

 
 
Overview 

 The design of computers 
•It all starts with numbers 
•Building circuits 
•Building computing machines 

 Digital systems 

 Understanding decimal numbers 

 Binary and octal numbers 
•The basis of computers! 

 Conversion between different number systems 
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Digital Systems 
 

 Digital systems consider discrete amounts of data. 
Examples 

•26 letters in the alphabet 
•10 decimal digits  

 Larger quantities can be built from discrete values: 
•Words made of letters 
•Numbers made of decimal digits (e.g. 239875.32) 

 Computers operate on binary values (0 and 1) 

 Easy to represent binary values electrically  
•Voltages and currents. 
•Can be implemented using circuits 
•Create the building blocks of modern computers 

 
 
Understanding Decimal Numbers 
 
•Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9) 
•But how many items does a decimal number represent? 

8653 = 8*103+ 6*102 + 5*101 + 3*100 
•What about fractions? 

97654.35 = 9*104+ 7*103 + 6*102 + 5*101 + 4*100+ 3*10-1 + 5*10-2 
•In formal notation -> (97654.35)10 
 
Understanding Binary Numbers 
•Binary numbers are made of binary digits (bits): 0 and 1 
•How many items does a binary number represent? 

(1011)2= 1*23+ 0*22 + 1*21 + 1*20 = (11)10 
•What about fractions?   

 (110.10)2= 1*22 + 1*21 + 0*20+ 1*2-1 + 0*2-2 
•Groups of eight bits are called a byte 

 (11001001)2 
•Groups of four bits are called a nibble.  

(1101)2 
 



Digital Design                                                                                                                            (Lecture -1-) 
 

3 
 

Why Use Binary Numbers? 
 

 Easy to represent 0 and 1 using 
electrical values. 

 Possible to tolerate noise. 

 Easy to transmit data 

 Easy to build binary circuits.  

 
 
 
 
 
 
 
 
 
Conversion Between Number Bases 

 
 Learn to convert between bases. 
 Already demonstrated how to convert from binary to decimal. 
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Convert an Integer from Decimal to another Base 
For each digit position: 

1. Divide decimal number by the base (e.g. 2) 

2. The remainder is the lowest-order digit3.Repeat first two steps until no divisor 

remains. 

 
 
Convert an Fraction from Decimal to another Base1. 

1. Multiply decimal number by the base (e.g. 2) 

2. The integer is the highest-order digit 

3. Repeat first two steps until fraction becomes zero. 
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The Growth of Binary Numbers 

 
Binary Addition 
 Binary addition is very simple. 

 This is best shown in an example of adding two binary numbers… 

 
Binary Subtraction 
 We can also perform subtraction (with borrows in place of carries). 

 Let’s subtract (10111)2 from (1001101)2… 

 

 
Binary Multiplication 
Binary multiplication is much the same as decimal multiplication, except that the 

multiplication operations are much simpler… 
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Convert an Integer from Decimal to Octal 
1. Divide decimal number by the base (8) 

2. The remainder is the lowest-order digit 

3. Repeat first two steps until no divisor remains. 

 

Convert an Fraction from Decimal to Octal 
1. Multiply decimal number by the base (e.g. 8) 

2. The integer is the highest-order digit 

3. Repeat first two steps until fraction becomes zero. 
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Understanding Hexadecimal Numbers 

 
 
Putting It All Together 
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Converting Between Base 16 and Base 2 

 
°Conversion is easy! 

 Determine 4-bit value for each hex digit 

°Note that there are 24= 16 different values of four bits 

°Easier to read and write in hexadecimal.  

°Representations are equivalent! 

Converting Between Base 16 and Base 8 

 
1. Convert from Base 16 to Base 2 
2. Regroup bits into groups of three starting from right 
3. Ignore leading zeros 
4. Each group of three bits forms an octal digit. 
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Signed Numbers 
How to Represent Signed Numbers 
•Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc. 

•For computers, desirable to represent everything as bits. 

•Three types of signed binary number representations: signed magnitude, 1’s 

complement, 2’s complement. 

•In each case: left-most bit indicates sign: positive (0) or negative (1). 

Consider signed magnitude: 

 

 
 
One’s Complement Representation 
•The one’s complement of a binary number involves inverting all bits. 

•1’s comp of 00110011 is 11001100 

•1’s comp of 10101010 is 01010101 

•For an n bit number N the 1’s complement is (2n-1) –N. 

•Called diminished radix complement by Mano since 1’s complement for base 

(radix 2). 

•To find negative of 1’s complement number take the 1’s complement. 
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Two’s Complement Representation 
•The two’s complement of a binary number involves inverting all bits and adding 

1. 

•2’s comp of 00110011 is 11001101 

•2’s comp of 10101010 is 01010110 

•For an n bit number N the 2’s complement is (2n-1) –N + 1. 

•Called radix complement by Mano since 2’s complement for base (radix 2). 

•To find negative of 2’s complement number take the 2’s complement. 

 

 
 
Two’s Complement Shortcuts 
°Algorithm –Simply complement each bit and then add 1 to the result. 

•Finding the 2’s complement of (01100101)2and of its 2’s complement… 
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1’s Complement Addition 
°Using 1’s complement numbers, adding numbers is easy.  

°For example, suppose we wish to add +(1100)2 and +(0001)2.  

°Let’s compute (12)10+ (1)10. 

•(12)10= +(1100)2 = 011002 in 1’s comp.  

•(1)10= +(0001)2= 000012 in 1’s comp. 

 
°Adding the carry bit, the sign bit is seen to be zero, indicating a positive result, 

(01101)2= +(1101)2= +(13)10 

1’s Complement Subtraction 
°Using 1’s complement numbers, subtracting numbers is also easy.  

°For example, suppose we wish to subtract +(0001)2 from + (1100)2. 

 
°Adding the carry bit, the sign bit is seen to be zero, indicating a positive result, 

(01011)2= +(1011)2= +(11)10 
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2’s Complement Addition 
°Using 2’s complement numbers, adding numbers is easy.  

°For example, suppose we wish to add +(1100)2 and +(0001)2.  

°Let’s compute (12)10 + (1)10. 

•(12)10= +(1100)2 = 011002 in 2’s comp.  

•(1)10= +(0001)2= 000012 in 2’s comp.  

 
°Discarding the carry bit, the sign bit is seen to be zero, indicating a positive result, 

(01101)2= +(1101)2= +(13)10 

2’s Complement Subtraction 
°Using 2’s complement numbers, follow steps for subtraction 

 °For example, suppose we wish to subtract +(0001)2 from + (1100)2. 

 
°Discarding the carry bit, the sign bit is seen to be zero, indicating a positive result, 

(01011)2= +(1011)2= +(11)10 
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2’s Complement Subtraction: Example #2 
°Let’s compute (13)10–(5)10. 

•(13)10= +(1101)2= (01101)2 

•(-5)10= -(0101)2= (11011)2 

°Adding these two 5-bit codes… 

 
 
°Discarding the carry bit, the sign bit is seen to be zero, indicating a positive result,  

(01000)2= +(1000)2= +(8)10 
 
2’s Complement Subtraction: Example #3 
°Let’s compute (5)10–(12)10. 

•(-12)10= -(1100)2= (10100)2 

•(5)10= +(0101)2= (00101)2 

°Adding these two 5-bit codes… 

 
 
°Here, there is no carry bit and the sign bit is 1. This indicates a negative result, 

which is what we expect. (11001)2= -(7)10. 
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Parity Codes 
°Parity codes are formed by concatenating a parity bit, P to each code word of C.  
°In an odd-parity code, the parity bit is specified so that the total number of ones is 
odd. 
°In an even-parity code, the parity bit is specified so that the total number of ones 
is even. 

 
 
Parity Code Example 
°Concatenate a parity bit to the ASCII code for the characters 0, X, and = to 

produce both odd-parity and even-parity codes. 
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Boolean Algebra and Logic Gates 
 
Combinational Circuit: The outputs at any instance of time are entirely 

dependent upon the inputs present at that time. 
 
°Analysis problem: 

 
•Determine binary outputs for each combination of inputs 
°Design problem: given a task, develop a circuit that accomplishes the task 
•Many possible implementation 
•Try to develop “best” circuit based on some criterion (size, power, performance, 
etc.) 
Describing Circuit Functionality: Inverter 

 
°Basic logic functions have symbols. 
°The same functionality can be represented with truth tables. 
•Truth table completely specifies outputs for all input combinations. 
°The above circuit is an inverter.  
•An input of 0 is inverted to a 1. 
•An input of 1 is inverted to a 0. 
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Describing Circuit Functionality: Waveforms 

 
°Waveforms provide another approach for representing functionality. 
°Values are either high (logic 1) or low (logic 0). 
°Can you create a truth table from the waveforms? 
 
Consider three-input gates 
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Boolean Algebra 
•A Boolean algebra is defined as a closed algebraic system containing a set K or 
two or more elements and the two operators, . and +. 

•Useful for identifying and minimizing circuit functionality 
•Identity elements 

a + 0 = a 
a . 1 = a 

•0 is the identity element for the + operation. 
•1 is the identity element for the . operation. 
 
 
Commutativity and Associativity of the Operators 
•The Commutative Property: 

For every a and b in K, 
a + b = b + a 
a . b = b . a 

•The Associative Property: 
For every a, b, and c in K, 

 a + (b + c) = (a + b) + c 
 a . (b . c) = (a . b) . c 

 
Distributivity of the Operators and Complements 
•The Distributive Property: 
For every a, b, and c in K, 

 a + ( b . c ) = ( a + b ) . ( a + c ) 
 a . ( b + c ) = ( a . b ) + ( a . c ) 

•The Existence of the Complement: 
For every a in K there exists a unique element called a’(complement of a) such 

that, 
 a + a’= 1 
 a . a’= 0 

•To simplify notation, the . operator is frequently omitted. When two elements are 
written next to each other, the AND (.) operator is implied… 

 a + b . c = ( a + b ) . ( a + c ) 
 a + bc= ( a + b )( a + c ) 
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Duality 
•The principle of duality is an important concept. This says that if an expression is 
valid in Boolean algebra, the dual of that expression is also valid. 

•To form the dual of an expression, replace all + operators with . operators, all . 
operators with + operators, all ones with zeros, and all zeros with ones. 

•Form the dual of the expression 
a + (bc) = (a + b)(a + c) 

•Following the replacement rules… 
a(b + c) = ab+ ac 

•Take care not to alter the location of the parentheses if they are present. 
 
Involution 
•This theorem states: 

a’’= a 
  Remember that aa’= 0 and a+a’=1. 
•Therefore, a’ is the complement of a and a is also the complement of a’. 
•As the complement of a’ is unique, it follows that a’’=a. 
 Taking the double inverse of a value will give the initial value. 
 
Absorption 
•This theorem states: 

a + ab= a                a(a+b) = a 
•To prove the first half of this theorem: 

a + ab = a . 1 + ab 
= a (1 + b) 
= a (b + 1) 
= a (1) 

     = a 
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DeMorgan’sTheorem 
•A key theorem in simplifying Boolean algebra expression is 
DeMorgan’sTheorem. It states: 

(a + b)’= a’b’              (ab)’= a’+ b’ 
 

•Complement the expression a(b + z(x + a’)) and simplify. 
 
(a(b+z(x + a’)))’= a’+ (b + z(x + a’))’ 

= a’+ b’(z(x + a’))’ 
= a’+ b’(z’+ (x + a’)’) 
= a’+ b’(z’+ x’a’’) 
= a’+ b’(z’+ x’a) 

 
•Basic logic functions can be made from AND, OR, and NOT (invert) functions 
•The behavior of digital circuits can be represented with waveforms, truth tables, 

or symbols 
•Primitive gates can be combined to form larger circuits 
•Boolean algebra defines how binary variables can be combined 
•Rules for associativity, commutativity, and distribution are similar to algebra 
•DeMorgan’srules are important.  
  Will allow us to reduce circuit sizes. 
 
The following table lists the most basic relations of Boolean algebra. All the 
relations can be proven by means of truth tables: 

X+0=X X.0=0 

X+1=1 X.1=X 

X+X=X X.X=X 

X+X’=1 X.X’=0 

X+Y=Y+X XY=YX 

X+(Y+Z)=(X+Y)+Z X(YZ)=(XY)Z 

X(Y+Z)=XY+XZ X+YZ=(X+Y)(X+Z) 

(X+Y)’=X’Y’ (XY)’=X’+Y’ 

X’’=X X+X’Y=X+Y 

X+XY=X X(X+Y)=X 

XY+XY’=X (X+Y)(X+Y’)=X 
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Boolean Functions 
•Boolean algebra deals with binary variables and logic operations. 
•Function results in binary 0 or 1 

 
 
•Boolean algebra deals with binary variables and logic operations. 
•Function results in binary 0 or 1 

 
 
Truth Table to Expression 
•Converting a truth table to an expression 
•Each row with output of 1 becomes a product term 
•Sum product terms together. 
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Equivalent Representations of Circuits 
•All three formats are equivalent 
•Number of 1’s in truth table output column equals AND terms for Sum-of-
Products (SOP) 

 

 
 
Reducing Boolean Expressions 
•Is this the smallest possible implementation of this expression? No! 
•Use Boolean algebra rules to reduce complexity while preserving functionality. 
•Step 1: Use Theorum1 (a + a = a) 

   So xyz + xyz’+ x’yz= xyz + xyz + xyz’+ x’yz 
•Step 2: Use distributive rule a(b + c) = ab+ ac 
  So xyz+ xyz+ xyz’+ x’yz= xy(z+ z’) + yz(x+ x’) 
•Step 3: Use Postulate 3 (a + a’= 1) 

    So xy(z+ z’) + yz(x+ x’) = xy.1 + yz.1 
•Step 4: Use Postulate 2 (a . 1 = a) 

   So xy.1 + yz.1 = xy+ yz= xyz + xyz’+ x’yz 
 
Reduced Hardware Implementation 
•Reduced equation requires less hardware! 
•Same function implemented! 
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Sum of Product (SOP) and Product of Sum (POS) 
   
Minterms and Maxterms 
•Each variable in a Boolean expression is a literal 
•Boolean variables can appear in normal (x) or complement form (x’) 
•Each AND combination of terms is a minterm 
•Each OR combination of terms is a maxterm 

 
 
Representing Functions with Minterms 
•Minterm number same as row position in truth table (starting from top from 0) 
•Shorthand way to represent functions 

 
 

This format is called Sum Of Product (SOP) 
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Complementing Functions 
•Minterm number same as row position in truth table (starting from top from 0) 
•Shorthand way to represent functions 

 
 

Complementation Example 
•Find complement of F = x’z+ yz   This format is called sum of product 
    F’= (x’z+ yz)’ 
•DeMorgan’s 
    F’= (x’z)’(yz)’ 
•DeMorgan’s 
    F’= (x’’+z’)(y’+z’) 
•Reduction -> eliminate double negation on x 
    F’= (x+z’)(y’+z’)  This format is called product of sums 
 
Conversion Between Canonical Forms 
•Easy to convert between minterm and maxterm representations 
•For maxterm representation, select rows with 0’s 

 
This format is called Product Of Sum (POS) 
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Representation of Circuits 
•All logic expressions can be represented in 2-level format 
•Circuits can be reduced to minimal 2-level representation 
•Sum of products representation most common in industry. 

 
 
Q) Assume the output (1,0,1,0, 1,0,1,0): 

1- Construct the truth table 

2- Find the Expression using sum of product then simplify the expression and draw the logic 
circuit diagram 

3- Find the Expression using product of sum 

 

 

 

 

 

2)  F= A’B’C’ + A’BC’ + AB’C’ + ABC’ =m0+m2+m4+m6=∑(0,2,4,6) 

 =A’C’(B’+B)+AC’(B’+B)= A’C’(1)+AC’(1)=A’C’+AC’=C’(A’+A)= C’(1)=C’ 

 

 

 

 

 

F= (A+B+C’) (A+B’+C’) (A’+B+C’) (A’+B’+C’)=M1M3M5M7=∏(1,3,5,7) 

Inputs Output 
F 

 
A B C  
0 0 0 1 A’B’C’      m0 
0 0 1 0                 m1 
0 1 0 1 A’BC’      m2 
0 1 1 0                  m3     
1 0 0 1            AB’C’         m4 
1 0 1 0                  m5 
1 1 0 1 ABC’       m6 
1 1 1 0                   m7     

Inputs Output 
F 

 
A B C  
0 0 0 1                   M0 
0 0 1 0 A+B+C’      M1 
0 1 0 1                    M2 
0 1 1 0  A+B’+C’   M3     
1 0 0 1                               M4 
1 0 1 0 A’+B+C’      M5 
1 1 0 1                     M6 
1 1 1 0 A’+B’+C’      M7     

3) 

1) 
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NAND and NOR Gates 

  

The NAND Gate 
•These three properties show that a NAND gate with both of its inputs driven by 

the same signal is equivalent to a NOT gate  
•A NAND gate whose output is complemented is equivalent to an AND gate, and a 

NAND gate with complemented inputs acts as an OR gate. 
•Therefore, we can use a NAND gate to implement all three of the elementary 

operators (AND,OR,NOT).  
•Therefore, ANY switching function can be constructed using only NAND gates. 

Such a gate is said to be primitive or functionally complete. 
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Functionally Complete Gates 
•Just like the NAND gate, the NOR gate is functionally complete…any logic 

function can be implemented using just NOR gates. 
•Both NAND and NOR gates are very valuable as any design can be realized using 

either one.  
•It is easier to build an IC chip using all NAND or NOR gates than to combine 

AND,OR, and NOT gates.  
•NAND/NOR gates are typically faster at switching and cheaper to produce. 
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NAND and XOR Implementations Combinational Design Procedure 
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Q) Convert to NAND gate only then to NOR gate only 

1) X=(B+C)(A+D) 

=(   )(   ) 

=(   )  (   ) 

=(   )  (   ) 

=(     )  (     ) 

 

X=(B+C)(A+D) 

=(   )(   ) 

=(   )  (   ) 

 

 )   (  )  (  ) 

 (  )  (  ) 

=(  ) (  ) 

=(   ) (   ) 

 

  (  )  (  ) 

 (  )  (  ) 

 

 (  )  (  ) 

=(   )  (   ) 

(     )  (     ) 
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3) K=(AB)+(C+D) 

=(  )  (   ) 

=(  )(   )  

=(  )(   )  

=(  )(   )  

=(  )(     )  

 

  K=(AB)+(C+D) 

=(  )  (   ) 

=(  )  (   ) 

=(    (   ) 

=(        (   ) 
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Minimization with Karnaugh Maps 
 
Karnaugh maps 
 Alternate way of representing Boolean function 

•All rows of truth table represented with a square 

•Each square represents a minterm 

 Easy to convert between truth table, K-map, and SOP 

•Unoptimized form: number of 1’s in K-map equal number of minterms (products) 

in SOP 

•Optimized form: reduced number of minterms 
 
Two variable maps 
It can be represented as follow: 
 

 

 
Or represented as follow: 
 

 

 

 

•A Karnaugh map is a graphical tool for assisting in the general simplification 

procedure. 

 

   y 
x       

 
0 

 
1 

   0 m0 m1 

   1  m2 m3 

   x 
y       

 
0 

 
1 

  0   m0 m2 

  1    m1 m3 

   x 
y       

 
0 

 
1 

  0    x’y’ xy’ 

  1   x’y xy 
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Three variable maps 
It can be represented as follow: 

 
   BC 
A       

 
00 

 
01 

 
11 

 
10 

     0  m0 m1 m3 m2 

     1 m4 m5 m7 m6 

 
Or represented as follow: 

   A 
BC       

 
0 

 
1 

   00 m0 m4 

   01 m1 m5 

   11 m3 m7 

   10 m2 m6 

 

 
 
 
 
 
 
 
 
 
 
 

  BC 
A       

 
00 

 
01 

 
11 

 
10 

     0 A’B’C’ A’B’C A’BC A’BC’ 

     1 AB’C’ AB’C ABC ABC’ 

 

   A 
BC       

 
0 

 
1 

   00 A’B’C’ AB’C’ 

   01 A’B’C AB’C 

   11 A’BC ABC 

   10 A’BC’ ABC’ 
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Rules for K-Maps 
 
 We can reduce functions by circling 1’s in the K-map 

 Each circle represents minterm reduction 

 Following circling, we can deduce minimized and-or form. 

Rules to consider 

 Every cell containing a 1 must be included at least once. 

 The largest possible “power of 2 rectangle must be enclosed. 

 The 1’s must be enclosed in the smallest possible number of rectangles. 
 

A Karnaugh map is a graphical tool for assisting in the general simplification 

procedure. 
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Karnaugh Maps for Four Input Functions 
 Represent functions of 4 inputs with 16 minterms 
 Use same rules developed for 3-input functions 
 Note bracketed sections shown in example. 

 

‘or represented as follow: 
 

 

 

 

 

 

Karnaugh map: 4-variable example 

F(A,B,C,D) =Σm(0,2,3,5,6,7,8,10,11,14,15) 
 

 

 

 

 

 

 

 

 

 

                                 F=C+A’BD+B’D’ 

    WX 
YZ      

 
00 

 
01 

 
11 

 
10 

     00 m0 m4 m12 m8 

     01 m1 m5 m13 m9 

     11 m3 m7 m15 m11 

     10 m2 m6 m14 m10 

    WX 
YZ     

 
00 

 
01 

 
11 

 
10 

     00 W’X’Y’Z’ W’XY’Z’ WXY’Z’ WX’Y’Z’ 

     01 W’X’Y’Z W’XY’Z WXY’Z WX’Y’Z 

     11 W’X’YZ W’XYZ WXYZ WX’YZ 

     10 W’X’YZ’ W’XYZ’ WXYZ’ WX’YZ’ 

Inputs F 
A B C D 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 1 1 1 1 

    CD 
AB      

 
00 

 
01 

 
11 

 
10 

     00 1 0 1 1 

     01 0 1 1 1 

     11 0 0 1 1 

     10 1 0 1 1 
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Karnaugh maps: Don’t cares 
 In some cases, outputs are undefined 
 We “don’t care” if the logic produces a 0 or a 1 
 This knowledge can be used to simplify functions. 
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Don’t Care Conditions 
 In some situations, we don’t care about the value of a function for certain 

combinations of the variables. 

•these combinations may be impossible in certain contexts 

•or the value of the function may not matter in when the combinations occur 

 In such situations we say the function is incompletely specified and there are 

multiple (completely specified) logic functions that can be used in the design. 

•so we can select a function that gives the simplest circuit 

 When constructing the terms in the simplification procedure, we can choose to 

either cover or not cover the don’t care conditions. 
 
Map Simplification with Don’t Cares 

 

•Alternative covering. 
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More KarnaughMap Examples 
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Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(A,B,C,D)= ∑ (0,2,4,5,6,7,8,10,13,15) 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

      00 1 0 0 1 

      01 1 1 1 1 

      11 0 1 1 0 

      10 1 0 0 1 

             F=A’B+BD+B’D’ 

               =A’B+(B⊙D) 

 

 

 

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(A,B,C,D)=∑(1,3,4,5,10-15) 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

     00 0 1 1 0 

      01 1 1 0 0 

      11 1 1 1 1 

      10 0 0 1 1 

             F=BC’+AC+A’B’D 

                

 

 

 

 

 

 

Inputs F 
A B C D 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1 

Inputs F 
A B C D 
0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 
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Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(A,B,C,D)= ∏(1,3,9,11,12,14)  

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

      00 1 0 0 1 

      01 1 1 1 1 

      11 0 1 1 0 

      10 1 0 0 1 

             F=A’B+BD+B’D’ 

               =A’B+(B⊙D) 

 

 

 

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(A,B,C,D)= ∏(0,2,6-9)  

 

 

 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

     00 0 1 1 0 

      01 1 1 0 0 

      11 1 1 1 1 

      10 0 0 1 1 

             F=BC’+AC+A’B’D 

 

 

 

 

Inputs F 
A B C D 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1 

Inputs F 
A B C D 
0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 
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Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(X,Y,Z)= X’Y’+YZ+X’YZ’ 

 

                

 

 

 

 

 

 

 

 

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(W,X,Y,Z)= WXY+X’Z’+W’XZ 

    YZ 
WX       

 
00 

 
01 

 
11 

 
10 

      00 1 0 0 1 

      01 0 1 1 0 

      11 0 0 1 1 

      10 1 0 0 1 

             F=X’Z’+W’XZ+WXY 

 

 

 

 

 

 

 

 

Inputs Output 
F X Y Z 

0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Inputs F 
W X Y Z 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 1 1 1 1 

   YZ 
X       

 
00 

 
01 

 
11 

 
10 

     0 1 1 1 1 

     1 0 0 1 0 

           F=X’+YZ 
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Q) Use a Karnaugh map to reduce the expression to a minimum SOP and minimum POS form 

F(X,Y,Z)= X’Z’+Y’Z’+YZ’+XY 

                

 

 

 

 

 

 

 

 

 

Q) Use a Karnaugh map to reduce the expression to a minimum SOP and minimum POS form, 
then draw both logic circuit 

F(A,B,C,D)= ∑(0,2,5,6,7,8,10)  

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

      00 1 0 0 1 

      01 0 1 1 1 

      11 0 0 0 0 

      10 1 0 0 1 

         F=A’BD+A’BC+B’D’      SOP 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

      00 1 0 0 1 

      01 0 1 1 1 

      11 0 0 0 0 

      10 1 0 0 1 

                                               F=(A’+B’)(B’+C+D)(B+D’)       POS 

 

Inputs F 
A B C D 
0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 

   YZ 
X       

 
00 

 
01 

 
11 

 
10 

     0 1 0 0 1 

     1 1 0 1 1 

          F=Z’+XY   SOP 

   YZ 
X       

 
00 

 
01 

 
11 

 
10 

     0 1 0 0 1 

     1 1 0 1 1 

         F=(X+Z’)(Y+Z’)       POS 

Inputs Output 
F X Y Z 

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Q) Use a Karnaugh map to reduce the expression to a minimum SOP form 

F(X,Y,Z)= ∑m(0,1,2,4,5)+ d(3,6,7) 

 

                

 

 

 

 

 

 

 

 

Q) Use a Karnaugh map to reduce the expression to a minimum SOP and minimum POS form, 
then draw both logic circuit 

F(A,B,C,D)= ∑m(0,1,2,3,7,8,10)+d(5,6,11,15) 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

      00 1 1 1 1 

      01 0 X 1 X 

      11 0 0 X 0 

      10 1 0 X 1 

               F=A’D+B’D’      SOP 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

      00 1 1 1 1 

      01 0 X 1 X 

      11 0 0 X 0 

      10 1 0 X 1 

                                               F=(A’+D’)(B’+D)       POS 

  

Inputs Output 
F X Y Z 

0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 X 
1 0 0 1 
1 0 1 1 
1 1 0 X 
1 1 1 X 

Inputs F 
A B C D 
0 0 0 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 X 
0 1 1 0 X 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 X 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 X 

   YZ 
X       

 
00 

 
01 

 
11 

 
10 

     0 1 1 X 1 

     1 1 1 X X 

           F=1 
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Exclusive-OR and Exclusive-NOR Circuits 
Exclusive-OR (XOR) produces a HIGH output whenever the two inputs are at 

opposite levels. 

 
Controlled Inverter: 
The XOR gate can be used as a "NOT" gate by connecting one of the inputs to the 
logic (1), for this reason it can be used to complement the 1st input  by using the 2nd 
input as control line, when control signal is logic (0) then, X = A. When control 
signal is logic (1) then, X A’ 
 
 
 
Exclusive-NOR (XNOR): Exclusive-NOR (XNOR) produces a HIGH output 

whenever the two inputs are at the same level.  
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Exclusive-NOR Circuits 
XNOR gate may be used to simplify circuit implementation. 

 
 
XOR Function 
 
XOR function can also be implemented with AND/OR gates (also NANDs). 

 
 
 

X 

 

                                                                       x⊕y 

 

 

y 
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XOR Function 
 Even function –even number of inputs are 1, the output will be 1. 

 Odd function –odd number of inputs are 1, the output will be 1. 

 

 

A B C Even 
Function 

Odd 
Function 

0 0 0 1 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 0 1 

 

 

 
Odd Function: 
F= A’B’C+A’BC’+AB’C’+ABC 

   =C(A’B’+AB)+C’(A’B+AB’) 

   =C(A⊕B)’+C’(A⊕B) 

  =A⊕B⊕C 
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Q) Design even and odd parity 

 Even parity – even number of inputs are 1, the output will be 0. 

 Odd parity –odd number of inputs are 1, the output will be 0. 

 

 

 

D3 D2 D1 D0 Even 
parity P 

Odd 
parity Y 

0 0 0 0 0 1 
0 0 0 1 1 0 
0 0 1 0 1 0 
0 0 1 1 0 1 
0 1 0 0 1 0 
0 1 0 1 0 1 
0 1 1 0 0 1 
0 1 1 1 1 0 
1 0 0 0 1 0 
1 0 0 1 0 1 
1 0 1 0 0 1 
1 0 1 1 1 0 
1 1 0 0 0 1 
1 1 0 1 1 0 
1 1 1 0 1 0 
1 1 1 1 0 1 

 

 

P= D’3D’2D’1D0+ D’3D’2D1D’0+ D’3D2D’1D’0+ D’3D2D1D0+ D3D2D’1D0+ D3D2D1D’0+ D3D’2D’1D’0+ D3D’2D1D0 

  =(D3⊕D2)⊕(D1⊕D0) 

Y=P’ 

 

 

 

 

 

                                                       P 
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D3 D2 D1 D0 Even 
parity 

P 

Even 
Parity 

Checker E 
0 0 0 0 0 0 
0 0 0 1 1 0 
0 0 1 0 1 0 
0 0 1 1 0 0 
0 1 0 0 1 0 
0 1 0 1 0 0 
0 1 1 0 0 0 
0 1 1 1 1 0 
1 0 0 0 1 0 
1 0 0 1 0 0 
1 0 1 0 0 0 
1 0 1 1 1 0 
1 1 0 0 0 0 
1 1 0 1 1 0 
1 1 1 0 1 0 
1 1 1 1 0 0 

 

E=P⊕((D3⊕D2)⊕(D1⊕D0)) 
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BCD to Seven Segment 
 
 
 Used to display binary coded decimal (BCD) numbers using seven illuminated 

segments. 
 BCD uses 0’s and 1’s to represent decimal digits 0 -9. Need four bits to represent 

required 10 digits. 
 Binary coded decimal (BCD) represents each decimal digit with four bits 
 
List the segments that should be illuminated for each digit. 
0: a,b,c,d,e,f 
1: b,c 
2: a,b,d,e,g 
3: a,b,c,d,g 
4: b,c,f,g 
5: a,c,d,f,g 
6: a,c,d,e,f,g 
7: a,b,c 
8: a,b,c,d,e,f,g 
9: a,b,c,d,f,g 
 

 
 
 Derive the truth table for the circuit. Each output column in one circuit. 
 

No. A B C D a b c d e f g 
0 0 0 0 0 1 1 1 1 1 1 0 
1 0 0 0 1 0 1 1 0 0 0 0 
2 0 0 1 0 1 1 0 1 1 0 1 
3 0 0 1 1 1 1 1 1 0 0 1 
4 0 1 0 0 0 1 1 0 0 1 1 
5 0 1 0 1 1 0 1 1 0 1 1 
6 0 1 1 0 1 0 1 1 1 1 1 
7 0 1 1 1 1 1 1 0 0 0 0 
8 1 0 0 0 1 1 1 1 1 1 1 
9 1 0 0 1 1 1 1 1 0 1 1 

  

               a 

        f     g     b 

        e            c 

               d 
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 Find minimal sum-of-products representation for each output 
For segment “a”: 

 

 

 

 

 

Note: Have only filled in ten squares, corresponding to the ten numerical digits we 
wish to represent. 

 

 Fill in don’t cares for undefined outputs. Leads to a reduced implementation 
•Note that these combinations of inputs should never happen.  
Put in “X” (don’t care), and interpret as either 1 or 0 as desired …. 
 

 

 

 
 

 

 

 
 Circle biggest group of 1’s and Don’t Cares. Leads to a reduced implementation. 

All 1’s should be covered by at least one implicant 
 Put all the terms together 
 Generate the circuit 

 
  

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

    00 1 0 1 1 

    01 0 1 1 1 

    11     

    10 1 1   

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

    00 1 0 1 1 

    01 0 1 1 1 

    11 X X X X 

    10 1 1 X X 
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a=A+C+BD+B’D’                        b=B’+C’D’+CD 

=A+C+(B⊙D)                                  =B’+(C⊙D)                             c=C’+D+B 

 

Homework 

Design circuits for segments d, e, f, and g of seven segments to display BCD 
numbers 

 

                                        

  

    CD 
AB       

 
00 

    00 1 1 1 1 

    01 1 0 1 0 

    11 X X X X 

    10 1 1 X X 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

    00 1 0 1 1 

    01 0 1 1 1 

    11 X X X X 

    10 1 1 X X 

    CD 
AB       

 
00 

 
01 

 
11 

 
10 

    00 1 1 1 0 

    01 1 1 1 1 

    11 X X X X 

    10 1 1 X X 
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Binary Addition and Subtraction 
Half adder 

Add two binary numbers 

X,Y: single bit inputs 

S: single bit sum, C: carry out 

X Y C S 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

S= X’Y+XY’=  (X⊕Y) 

C: XY 

Full adder 

Full adder includes carry in Cin 
A B Cin Cout S 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 

 

 

 

 

 

 

 

        X                                                      S                                                 

        Y 

 

               C 

   BC 
A       

 
00 

 
01 

 
11 

 
10 

     0 0 1 0 1 

     1 1 0 1 0 

          S = A’B’ Cin+ A’BC’in+ 

               AB’ C’in+ ABCin 

        = Cin(A’B’+AB)+ C’in(A’B+AB’) 

             = Cin(A⊕B)’+ C’in(A⊕B) 

             = Cin⊕A⊕B 

   BC 
A      

 
00 

 
01 

 
11 

 
10 

     0 0 0 1 0 

     1 0 1 1 1 

         Cout= ACin+AB+BCin 

 
Cout= A’BCin+ A B’Cin+ ABC’in+ ABCin 

= A’BCin+ ABCin+ AB’Cin+ ABCin+ ABC’in+ ABCin 

= (A’+ A)BCin+ (B’+ B)ACin+ (C’in+ Cin)AB 

= 1·BCin + 1·ACin+ 1·AB 

= BCin+ ACin+ AB 
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 Full adder made of several half adders 

 
 Hardware repetition simplifies hardware design 

 
 

A full adder can be made from two half adders (plus an OR gate). 
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 Putting it all together  
•Single-bit full adder 
•Common piece of computer hardware 

 
 
4-Bit Adder 
Chain single-bit adders together. 
What does this do to delay? 
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Half Subtractor 

Subtract two binary numbers 

X,Y: single bit inputs, D: single bit difference, B: barrow 

X Y D B 
0 0 0 0 
0 1 1 1 
1 0 1 0 
1 1 0 0 

D= X’Y+XY’=(X⊕Y) 

B: X’Y 

Full subtractor 

Full subtractor include barrow: Bin 

X Y Bin D Bout 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

 

 

 

 

 

 

 

 

 

 

   YB 
X       

 
00 

 
01 

 
11 

 
10 

     0 0 1 0 1 

     1 1 0 1 0 

          D = X’Y’ Bin+ X’YB’in+ 

               XY’ B’in+ XYBin 

           = Bin(X’Y’+XY)+ B’in(X’Y+XY’) 

             = Bin(X⊕Y)’+ B’in(X⊕Y) 

             = Bin⊕X⊕Y 

   YB 
X      

 
00 

 
01 

 
11 

 
10 

     0 0 1 1 1 

     1 0 0 1 0 

         Bout= X’ Bin+X’Y+YBin 
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Negative Numbers –2’s Complement. 
Subtracting a number is the same as: 
1. Perform 2’s complement 
2. Perform addition 
°If we can augment adder with 2’s complement hardware? 

 
4-bit Subtractor: E = 1 

 

Adder-Subtractor Circuit 

 
 

Note:-  

S=0: Addition 

S=1: Subtraction 
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Digital Comparator 

Q) Compare two numbers each number has 1 bit 

A B A=B A>B A<B 
0 0 1 0 0 
0 1 0 0 1 
1 0 0 1 0 
1 1 1 0 0 

 

A=B : A’B’+AB=(A⊕B)’=A⊙B 

A>B: AB’ 

A<B: A’B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A              A=B 

B 

 

               A>B 

 

       

                 A<B 
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Q) Compare two numbers each number has 2 bits 

A2 A1 B2 B1 A=B A>B A<B 
0 0 0 0 1 0 0 
0 0 0 1 0 0 1 
0 0 1 0 0 0 1 
0 0 1 1 0 0 1 
0 1 0 0 0 1 0 
0 1 0 1 1 0 0 
0 1 1 0 0 0 1 
0 1 1 1 0 0 1 
1 0 0 0 0 1 0 
1 0 0 1 0 1 0 
1 0 1 0 1 0 0 
1 0 1 1 0 0 1 
1 1 0 0 0 1 0 
1 1 0 1 0 1 0 
1 1 1 0 0 1 0 
1 1 1 1 1 0 0 

A=A2A1 , B=B2B1 

A=B: (A2=B2 ) and (A1=B1)           =(A2⊙B2).(A1⊙B1) 

A>B: (A2>B2) or ((A2=B2) and (A1>B1))            =(A2B’2) +((A2⊙B2).(A1B’1)) 

A<B: (A2<B2) or ((A2=B2) and (A1<B1))           =(A’2B2) +((A2⊙B2).(A’1B1)) 
 
A=B: A’2A’1 B’2 B’1+ A’2A1 B’2 B1+ A2A’1 B2 B’1+ A2A1 B2 B1 

= A’2B’2(A’1B’1+ A1B1)+A2B2(A’1B’1+ A1B1) 

= A’2B’2(A1⊙B1)+ A2B2(A1⊙B1)= (A1⊙B1)( A’2B’2+ A2B2)= (A1⊙B1) (A2⊙B2) 
 

A<B: A’2A’1B’2B1+A’2A’1 B2B’1+A’2A’1B2B1+A’2A1B2B’1+A’2A1B2B1+A2A’1 B2B1 

= A’2B2(A’1B’1+A’1B1+A1B’1+A1B1)+ A’2A’1B’2B1+A2A’1 B2B1 

= A’2B2(A’1(B’1+B1)+A1(B’1+B1))+ A’1B1(A’2B’2+ A2B2) 

= A’2B2(A’1(1)+A1(1))+ A’1B1(A2⊙B2) 

= A’2B2(A’1 +A1) + A’1B1(A2⊙B2) 

= A’2B2(1) + A’1B1(A2⊙B2) = (A’2B2) + ((A’1B1).(A2⊙B2)) 
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Physical Implementation 

  
 

 B2B1 

 
A2A1       

 
 

00 

 
 

01 

 
 

11 

 
 

10 
    00 0 0 0 0 

    01 1 0 0 0 

    11 1 1 0 1 

    10 1 1 0 0 

 B2B1 

 
A2A1       

 
 

00 

 
 

01 

 
 

11 

 
 

10 
    00 0 1 1 1 

    01 0 0 1 1 

    11 0 0 0 0 

    10 0 0 1 0 

 B2B1 

 
A2A1       

 
 

00 

 
 

01 

 
 

11 

 
 

10 
    00 1 0 0 0 

    01 0 1 0 0 

    11 0 0 1 0 

    10 0 0 0 1 

A=B: A’2A’1 B’2 B’1+ A’2A1 B’2 B1+ 
A2A’1 B2 B’1+ A2A1 B2 B1 

= A’2B’2(A’1B’1+ 
A1B1)+A2B2(A’1B’1+ A1B1) 

= A’2B’2(A1⊙B1)+ A2B2(A1⊙B1) 

= (A1⊙B1)( A’2B’2+ A2B2) 

= (A1⊙B1) (A2⊙B2) 

A>B: A2 B’2+ A1 B’2 B’1+ A2A1B’1 

    = A2 B’2+ A1 B’1(B’2+ A2) 

 

A<B: A’2 B2+ A’1 B2 B1+ A’2A’1B1 

         = A’2 B2+ A’1B1(B2+ A’2) 
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Encoder, Decoder, Multiplexer, and Demultiplexer 
 

Encoders 
If the decoder's output code has fewer bits than the input code, the device is usually 
called an encoder. 
 

         e.g. 2n-to-n  
The simplest encoder is a 2n-to-n binary encoder 
•One of 2n inputs = 1  
•Output is an n-bit binary number  
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Digital Design                                                                                                                            (Lecture -8-) 
 
 

64 
 

Binary Decoder 
 Black box with n input lines and 2n output lines 
 Only one output is a 1 for any given input 
 

2-to-4 Binary Decoder  

 
3-to-8 Binary Decoder  
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Use two 3 to 8 decoders to make 4 to 16 decoder 
 Enable can also be active high 
  In this example, only one decoder can be active at a time. 
 x, y, z effectively select output line for w 
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Multiplexer 

A multiplexer is a network that has many inputs and one output, and the value of 
the output will be the value of one of inputs which will be decided by some select 
lines. The simplest type of multiplexer is the two line to one line data multiplexer. 
Let A be one of the inputs and B is the other input and Y is the output, and S is the 
select line, then Y = A if Select = 0, Y = B if Select = 1. 
 Select an input value with one or more select bits 
 Use for transmitting data 
 Allows for conditional transfer of data 
 Sometimes called a mux 
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Demultiplexer 
A demultiplexer basically reverses the multiplexing function. It is take data 

from one line and distribute them to given number of output lines. The following 
figure shows a one to four line demultiplexer circuit. The input data line goes to all 
of the AND gates. The two select lines enable only one gate at a time and the data 
appearing on the input line will pass through the selected gate to the associated 
output line. 

 
 

The simplest type of demultiplexer is the one to two lines DMUX. 
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Q) Design majority voting using 4*1 multiplexer 

 

r=0 

 

r=Z 

r=Z 

r=1 

 
 

Q) Design 3-bit even Parity using 4*1 multiplexer 

 

r=Z 

 

r=Z’ 

r=Z’ 

r=Z 

 

 

 

 

 

 

 

 

 

X Y Z r 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

X Y Z r 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

                            X        y 

             0 

             Z                                          r 

             

             1 

0  S0        s1 

1     4*1  

2      MUX 

3 

                            X        y 

      Z        

                                                        r 

              

              

0 S0      S1 

1     4*1  

2      MUX 

3 
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Q) Design the full adder using 3*8 decoder 

X Y Cin Cout S 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 
        S(x, y, Cin) = Σ(1,2,4,7) 

Cout (x, y, Cin) = Σ(3,5,6,7) 

 

 

Q) Design the full adder using 4*1 multiplexer 

X Y Cin Cout  
 

Cout=0 
Cout= Cin 

 

Cout= Cin 

 
Cout= 1 

 

S  
 

S= Cin 

S= C’in 

 

S= C’in 

 
S= Cin 

 

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

                        

                     X    Y                                             X    Y 

0 

Cin                                                     S 

1 

 

 

                Cin 

Cout 

0  S0    S1 

1     4*1  

2      MUX 

3 

0  S0    S1 

1     4*1  

2      MUX 

3 

Cin 
Cout 
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Q) Design the circuit using 4*1 multiplexer Z=f(A,B,C)=A’B’C’+A’B+ABC’+AC 

 

Z=C’      when the Select Lines: A, B 

Z=1               then the Function Table    

Z=C 

Z=1 

 

 

 

 

          when the Select Lines: A, C 

                 then the Function Table    

 

 

 

 

 

 
          When the Select Lines: A, C 

                 then the Function Table    

 

 

 

 

A B C Z 

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

S0=A S1=B Z 
0 0 C’ 
0 1 1 
1 0 C 
1 1 1 

A B C Z 

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

S0=A S1=C Z 
0 0 1 
0 1 B 
1 0 B 
1 1 1 

A B C Z 

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

S0=B S1=C Z 
0 0 A’ 
0 1 A 
1 0 1 
1 1 1 

                           A        B 

       C       

   1                                                   Z 

              

              

0 S0       S1 

1     4*1  

2      MUX 

3 

1-1) 

                           A        C 

       1       

   B                                                   Z 

              

              

0 S0       S1 

1     4*1  

2      MUX 

3 

1-2) 

                           B       C 

       A       

                                                      Z 

     1         

              

0 S0       S1 

1     4*1  

2      MUX 

3 

1-3) 
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2)  C 
AB       

 
0 

 
1 

   00 1 0 

   01   1 1 

  11 1 1 

  10 0 1 

3) 
Z=f(A,B,C)=A’B’C’+A’B+ABC’+AC 

                       =A’B’C’+A’B(C+C’)+ABC’+AC(B+B’) 

                       =A’B’C’+A’BC+A’BC’+ABC’+ABC+AB’C 

                       =A’B’(C’)+A’B(C+C’)+AB(C+C’)+AB’C 

                       =A’B’(C’)+A’B(1)+ AB’(C)+ AB(1)  

4)  Z=f(A,B,C)=A’B’C’+A’B+ABC’+AC= A’B’C’+A’BC+A’BC’+ABC’+ABC+AB’C 

                                        Index(No. of 1)         0             2         1          2           3        2 

                                        Value                         0             3         2          6           7        5 
       1          2        4       weight 

       C         B        A          

     2,3        0,2      2,6     (the difference between numbers    

     6,7        5,7      3,7     have different index=weight) 

All variable have the same no. of pairs then take any one like C 

 

 

 

 

 

 

 

 

 

Value according to 
index 

A B C 

0 0 0 0 
2 0 1 0 
3 0 1 1 
5 1 0 1 
6 1 1 0 
7 1 1 1 

Z=C’        C=0 

Z=1    both 1 

Z=1    both 1 

Z=C          C=1 

4    2             0   1                        data value 
A    B           C’   C  
0     0           0     1                           C’ 
0     1           2     3                           1 
1     0           4    5                           C 
1     1           6    7                           1 

        can be drawn like this                       

              C’ 

              1                                           Z 

               C 

                1 

              

                                 A      B 

              

A’B’ 

A’B     4*1 

AB’     MUX 

AB  S0    S1 
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Q) Design the circuit using 4*1 multiplexer Z=f(A,B,C)=A’B+B’C+BC+AB’C’ 

 

Z=C 

Z=1 

Z=1 

Z=C 

2)  C 
AB       

 
0 

 
1 

   00 0 1 

   10    1 1 

  11 0 1 

  10 1 1 

3) Z=f(A,B,C)= A’B+B’C+BC+AB’C’ 

                       =A’B(C+C’)+B’C(A+A’)+BC(A+A’)+AB’C’ 

                       =A’BC+A’BC’+AB’C+A’B’C+ABC+A’BC+AB’C’  

   =A’B’C+A’BC+A’BC’+AB’C+AB’C’+ABC=A’B’C+A’B(C+C’)+AB’(C+C’)+ABC 

                       =A’B’(C)+A’B(1)+ AB’(1)+ AB(C)  

4)  Z=f(A,B,C)= A’B+B’C+BC+AB’C’= A’BC+A’BC’+AB’C+A’B’C+ABC+AB’C’ 

                                        Index(No. of 1)       2         1         2          1           3        1 

                                        Value                       3        2         5          1           7        4 
       1          2        4 

       C         B        A          

     2,3        1,3      1,5     (the difference between numbers    

     4,5                   3,7     have different index=weight) 

A,C have the same no. of pairs then take any one like C 

 

 

 

A B C Z 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

Value according to 
index 

A B C 

1 0 0 1 
2 0 1 0 
4 1 0 0 
3 0 1 1 
5 1 0 1 
7 1 1 1 

                             A        B 

       C       

   1                                                   Z 

              

              

0 S0      S1 

1     4*1  

2      MUX 

3 

Z=C        C=1 

Z=1    both 1 

Z=C    C=1 

Z=1          both 1 

1) 

4    2             0   1                        data value 
A    B           C’   C  
0     0           0     1                           C 
0     1           2     3                           1 
1     0           4    5                           1 
1     1           6    7                           C 

     Or can be drawn like this                       

       C 

              1                                           Z 

                

                

              

                                 A      B 

              

A’B’ 

A’B     4*1 

AB’     MUX 

AB  S0    S1 
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Q) Design the circuit using 8*1 multiplexer Z=f(A,B,C,D)=∑(1,3,4,7,12,13) with 
don’t care (0,5,8,11)  

 

Z=1;D 

Z=D 

Z=1;D'   

Z=D 

Z=0;D’ 

Z=0;D 

Z=1               0 

Z=0 

2)  Z=f(A,B,C,D)=∑(1,3,4,7,12,13) with don’t care (0,5,8,11) 

        Index(No. of 1)      1  2  1  3   2    3                                  0  2  1   3 
     1          2        4          8 

      D         C         B        A          

      0,1      1,3      0,4      0,8     (the difference between numbers    

     4,5       5,7      1,5       4,12    have different index=weight) 

    12,13               8,12      3,11 

                            3,7       5,13 

A,B have the same no. of pairs then take any one like A 

        

 

 

 

 

 

 

 

A B C D Z 

0 0 0 0 X 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 X 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 X 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 X 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 0 

Value 
according 
to index 

A B C D 

0 0 0 0 0 
1 0 0 0 1 
4 0 1 0 0 
8 1 0 0 0 
3 0 0 1 1 
5 0 1 0 1 

12 1 1 0 0 
7 0 1 1 1 

11 1 0 1 1 
13 1 1 0 1 

                           A     B   C 

       1       

  D                                                   Z 

              

              

0 S0  S1   S2 

1     8*1  

2      MUX 

3 

4 

5 

6 

7 

1) 

4    2    1              0   8                        data value 
B    C    D             A’   A  
0     0    0            0     8                          1 
0     0     1           1     9                           A’ 
0     1     0           2   10                           0 
0     1     1           3    11                          1 
1     0    0            4    12                          1 
1     0     1           5    13                          1 
1     1     0           6   14                           0 
1     1      1          7    15                          A’ 
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Q) Design the circuit using 8*1 multiplexer  

Z=f(A,B,C,D)=A’C’D’+BC’D’+AB’C’+A’BC’D+A’B’CD’  

 

Z=D’ 

Z=D’ 

Z=1   

Z=0 

Z=1 

Z=0 

Z=D’ 

Z=0                

 

Q) Design the circuit using 8*1 multiplexer  

Z=f(K,L,M,N)=KL’N’+KLM’+LMN+K’L’MN with don’t care 
(K’LM’N,KL’MN)  

 

Z=0 

Z=N 

Z=0;N   

Z=N 

Z=N’ 

Z=1;N’ 

Z=1 

Z=N                

A B C D Z 

0 0 0 0 1 
0 0 0 1 0 
0 0 1 0 1 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 1 
1 0 0 1 1 
1 0 1 0 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 0 

K L M N Z 

0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 X 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 0 1 1 X 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1 

                           A     B   C 

D              

                                                         Z 

1 

0                                                    

              

              

0 S0  S1   S2 

1     8*1  

2      MUX 

3 

4 

5 

6 

7 

                        K     L   M 

  0       

N                                                   Z 

              

   

 

1            

0 S0  S1   S2 

1     8*1  

2      MUX 

3 

4 

5 

6 

7 
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Homework 

Q1) Design the circuit using 8*1 multiplexer  

Z=f(A,B,C,D)=∑(0,1,2,3,5,7,8,10,12,13,15) 

Q2) Design the circuit using 8*1 multiplexer  Z=f(A,B,C)=∑(2,3,5,6,7) 

Q3) Design the circuit using 4*1 multiplexer  Z=f(A,B,C)=∑(2,3,5,6,7) 

Q4) Design the comparator to compare 2 numbers each has 2 bits using 4*16 decoder  

Q5) Design the comparator to compare 2 numbers each has 2 bits using 8*1 
multiplexer   

Q6) Design the circuit using 4*1 multiplexer  Z=f(A,B,C)=A’B+BC+A’C 
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Sequential Circuits 
Sequential Circuits: Consist of a combinational circuit to which memory 

elements are connected to form a feedback path. The memory elements (Flip-

Flops) are devices capable of storing binary information within them. This binary 

information at any given time defines the state of the sequential circuit. 

 Outputs depend on inputs and previous values of outputs 

 Outputs depend on previous state of the circuit 

 State is stored in memory elements (registers, latches, flip flops) 

 

Cross-Coupled Invertor 

A stable value can be stored at inverter outputs 
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Flip-Flop  

1-S-R Flip-Flop  

S-R latch made from cross-coupled NORs  

                                                  

Logic circuit diagram of Simple S-R 

             

Logic circuit diagram of Clock S-R 

 

 Occasionally, desirable to avoid latch changes  
 C = 0 disables all latch state changes 
 Control signal enables data change when C = 1 

                                              Graphic Symbol 

               

 
NOR S-R Latch with Control Input 
Latch is level-sensitive, in regards to C 
Only stores data if C’= 0 

S          Q 

 

R       Q’    
QQ 

Clk 

C  
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                                                                    Q(t+1) =S+R’Qt 

                                                                     S.R=0 

2-J-K Flip-Flop   

            

Logic circuit diagram of Clock J-K                    Graphic Symbol 

 

 

                              

                                    𝑸𝒕+𝟏 = 𝑱𝑸𝒕 + 𝑲𝑸𝒕 

 Two data inputs, J and K 
 J -> set, K -> reset, if J=K=1 then toggle output  

Inputs Output 
Q(t+1) S R Qt 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 X 
1 1 1 X 

Qt Q(t+1) S R 
0     0 0 x 
0 1 1 0 
1 0 0 1 
1 1 x 0 

Inputs Output 
Q(t+1) J K Qt 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Qt Q(t+1) J K 
0     0 0 X 
0 1 1 X 
1 0 X 1 
1 1 x 0 

J K Q(t+1) 

0     0 Qt    No change 
0 1 0 Reset 
1 0 1 Set 
1 1 Q’t    Toggle 

S R Q(t+1) 

0     0 Qt    No change 
0 1 0 Reset 
1 0 1 Set 
1 1 Unpredictable 

      Characteristic table 

        Characteristic table 

J 

 

 

K 

  Truth table 

  Excitation table 

  Truth table 
  Excitation table 
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3-D Flip-Flop  

 Q0 indicates the previous state (the previously stored value) 
 Stores a value on the positive edge of C (D gets latched to Q on the rising 

edge of the clock, Input changes at other times have no effect on output) 
 

 

 
Positive and Negative Edge D Flip-Flop 

 D flops can be triggered on positive or negative edge 
 Bubble before Clock (C) input indicates negative edge trigger 
 

  

 

 

 

 

Inputs Output 
Q(t+1) D Qt 

0 0 0 
0 1 0 
1 0 1 
1 1 1 

                                                                                                       

                 𝑸𝒕+𝟏 = 𝑫 

 Input value D is passed to output Q when C is high  
 Input value D is ignored when C is low  

 
 

Qt Q(t+1) D 
0     0 0 
0 1 1 
1 0 0 
1 1 1 

D Qt 

0 0 Reset 
1 1 Set 

  Characteristic table 

C  

  Truth table 
  Excitation table 
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Master-Slave D Flip Flop 

 Consider two latches combined together 
 Only one C value active at a time 
 Output changes on falling edge of the clock 

 

 
Symbols for Latches 

 
 SR latch is based on NOR gates 
 S’R’ latch based on NAND gates 
 D latch can be based on either. 
 D latch sometimes called transparent latch 
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4-T Flip-Flop   

   

    Graphic Symbol 

 

Inputs Output 
Q(t+1) T Qt 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

                                                                                      
𝑸𝒕+𝟏 = 𝑻𝑸𝒕 + 𝑻𝑸𝒕 = 𝑻 ⊕ 𝑸𝒕 

 

Convert from one Flip-Flop (F.F) to another 

1- S-R F.F → D F.F 

 

 

  

 

 

 

 

 

S=D 

 

 

 

 

Qt Q(t+1) T 
0     0 0 
0 1 1 
1 0 1 
1 1 0 

T Q(t+1) 

0 Qt    No change 
1 Q’t    Toggle 

D Qt Q(t+1) S R 
0 0     0 0 x 
0 1 0 0 1 
1 0 1 1 0 
1 1 1 x 0 

   Q 
D       

 
0 

 
1 

     0 0 0 

     1 1 X 

  Characteristic table 

T 

   Q 
D       

 
0 

 
1 

     0 X 1 

     1 0 0 

                   R=D’ 

S          Q 

 

R       Q’    
QQ 

D 

   Clk 

  D                R 

 

              C  

             S 

 

D        S 

 

 

 

                       R 

  Excitation table 

  Truth table 

Use Truth table of D 
& 

 Excitation table of S-R 
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2- J-K F.F → D F.F 

 

 

 

 

 

 

 

 

J=D 

 

 

 

 

 

 

3- T F.F → D F.F 

 

 

 

 

 

 

 

 

                        
T=DQ’+D’Q=D⊕Q 

 

D Qt Q(t+1) J K 
0 0     0 0 x 
0 1 0 X 1 
1 0 1 1 X 
1 1 1 x 0 

   Q 
D       

 
0 

 
1 

     0 0 X 

     1 1 X 

D Qt Q(t+1) T 
0 0     0 0 
0 1 0 1 
1 0 1 1 
1 1 1 0 

   Q 
D       

 
0 

 
1 

     0 0 1 

     1 1 0 

   Q 
D       

 
0 

 
1 

     0 X 1 

     1 X 0 

                   K=D’ 

J          Q 

 

K       Q’    
QQ 

D 

   Clk 

D        J 

 

 

 

                       K 

 T                    Q 

 

                     Q’     

 

   Clk 

D 

Use Truth table of D 
& 

 Excitation table of J-K 

Use Truth table of D 
& 

 Excitation table of T 
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4) S-R F.F → T F.F 

 

 

 

 

       

 

 

 

𝑆 = 𝑇. 𝑄 

 

 

 

   

 

5) J-K F.F→ T F.F 

 

 

 

 

 

 

 

 

J=T 

 

 

 

T Qt Q(t+1) S R 
0 0     0 0 x 
0 1 1 X 0 
1 0 1 1 0 
1 1 0 0 1 

   Q 
T       

 
0 

 
1 

     0 0 X 

     1 1 0 

T Qt Q(t+1) J K 

0 0     0 0 x 
0 1 1 X 0 
1 0 1 1 X 
1 1 0 x 1 

   Q 
T       

 
0 

 
1 

     0 0 X 

     1 1 X 

  T                R 

 

              C  

             S 

 

T       S 

 

 

 

R 

 

              

   Q 
T       

 
0 

 
1 

     0 X 0 

     1 0 1 

                   R=T.Q 

S             Q 

 

R           Q’    
QQ 

T 

   Clk 

   Q 
T       

 
0 

 
1 

     0 X 0 

     1 X 1 

                   K=T 

J          Q 

 

K       Q’    
QQ 

T 

   Clk 

T       J 

 

 

 

                 K 

 

              

Use Truth table of T 
& 

 Excitation table of S-R 

Use Truth table of T 
& 

 Excitation table of J-K 
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6- J-K F.F → S-R F.F 

 

 

 

 

 

 

 

 

 

 

 

 

J=S 

K=R 

 

Homework 

1) Convert D F.F → T F.F 
2) Convert D F.F → S-R F.F 
3) Convert T F.F → J-K F.F 
4) Convert D F.F → J-K F.F 
5) Convert S-R F.F → J-K F.F 
6) Convert T F.F → S-R F.F 

 
 

 

S R Qt Q(t+1) J K 
0 0 0     0 0 x 
0 0 1 1 X 0 
0 1 0 0 0 X 
0 1 1 0 x 1 
1 0 0     1 1 X 
1 0 1 1 X 0 
1 1 0 X X X 
1 1 1 X X X 

  RQ 
S       

 
00 

 
01 

 
11 

 
10 

     0 0 X X 0 

     1 1 X X X 

  RQ 
S       

 
00 

 
01 

 
11 

 
10 

     0 X 0 1 X 

     1 X 0 X X 

J             Q 

 

K           Q’    
QQ 

   S 

   Clk 

   R 

Use Truth table of S-R 
& 

 Excitation table of J-K 
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Counter  
 
°Counters are important components in computers 

•The increment or decrement by one in response to input  

°Two main types of counters 

•Ripple (asynchronous) counters 

•Synchronous counters 

°Ripple counters  

•Flip flop output serves as a source for triggering other flip flops 

°Synchronous counters 

•All flip flops triggered by a clock signal 

°Synchronous counters are more widely used in industry. 
 
°Counter: A register that goes through a prescribed series of states 

°Binary counter 

•Counter that follows a binary sequence 

•N bit binary counter counts in binary from 0 to 2n-1 

°Ripple counters triggered by initial Count Signal 

°Applications: 

•Watches 

•Clocks 

•Alarms 

•Web browser refresh 
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Counter: A sequential circuit that goes through a prescribed sequence of states 

upon the application of input pulses. Which used for counting the number of 

occurrences of an event and are useful for generating timing sequences to 

control operations in a digital system. 

Asynchronous binary counter 

A three-stage asynchronous binary counter is shown in the following figure. It has 

eight states due to its three states.  

 

 
A timing diagram appears in the following figure for eight clock pulse. 
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Notes:- 

 Reset signal sets all outputs to 0 

 Count signal toggles output of low-order flip flop 

 Low-order flip flop provides trigger for adjacent flip flop 

 Not all flops change value simultaneously 

•Lower-order flops change first 

 Each FF output drives the CLK input of the next FF.  

 FFs do not change states in exact synchronism with the applied clock pulses. 

 There is delay between the responses of successive FFs. 

 Ripple counter due to the way the FFs respond one after another in a kind of 

rippling effect. 

 
 

Synchronous binary counter 

The synchronous counter is also called a parallel counter because the clock line 

is connected in parallel to each Flip-Flop. Notice that an arrangement different 

from that for the asynchronous counter. The following figure shows a four-stage 

binary counter and its equivalent logic symbol. 
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Q) Design 4 bit counter using J-K F.F 

                     

 Excitation table of J-K F.F 
 

 

 

 

 

     

Present State Qt Next State Qt+1 JD KD JC KC JB KB JA KA 
D C B A D C B A 
0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X 
0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1 
0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X 
0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1 
0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X 
0 1 0 1 0 1 1 0 0 X X 0 1 X X 1 
0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X 
0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1 
1 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X 
1 0 0 1 1 0 1 0 X 0 0 X 1 X X 1 
1 0 1 0 1 0 1 1 X 0 0 X X 0 1 X 
1 0 1 1 1 1 0 0 X 0 1 X X 1 X 1 
1 1 0 0 1 1 0 1 X 0 X 0 0 X 1 X 
1 1 0 1 1 1 1 0 X 0 X 0 1 X X 1 
1 1 1 0 1 1 1 1 X 0 X 0 X 0 1 X 
1 1 1 1 0 0 0 0 X 1 X 1 X 1 X 1 

Qt Q(t+1) J K 
0     0 0 X 
0 1 1 X 
1 0 X 1 
1 1 x 0 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 0 0 0 0 

    01 0 0 1 0 

    11 X X X X 

    10 X X X X 

    BA 
DC        

 
00 

 
01 

 
11 

 
10 

    00 0 0 1 0 

    01 X X X X 

    11 X X X X 

    10 0 0 1 0 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 X X X X 

    01 X X X X 

    11 0 0 1 0 

    10 0 0 0 0 

        JD=QC.QB.QA                                            kD=QC.QB.QA                       JC=QB.QA                                             kC=QB.QA 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 X X X X 

    01 0 0 1 0 

    11 0 0 1 0 

    10 X X X X 
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                           Four-stage synchronous binary counter 

 
Notes:- 
 Synchronous (parallel) counters 

•All of the FFs are triggered simultaneously by the clock input pulses. 
•All FFs change at same time 

 Remember 
•If J=K=0, flop maintains value 
•If J=K=1, flop toggles 

 Most counters are synchronous in computer systems. 

 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 1 X X 1 

    01 1 X X 1 

    11 1 X X 1 

    10 1 X X 1 

             JA=1 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 X 1 X 0 

    01 X X 1 0 

    11 X X 1 0 

    10 X X 1 0 

              KB=QA              

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 0 X 1 X 

    01 0 1 X X 

    11 0 1 X X 

    10 0 1 X X 

                   JB=QA 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

      X 1 1 X 

     X 1 1 X 

 X 1 1 X 

 X 1 1 X 

              KA=1 
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Decade Counter 
Decade counters are very important category of digital counter because of their 

wide application, a decade counter has ten states in its sequence that is, it has 

modulus of ten. It consist of four stages and can have any given sequence of states 

as long as there are ten. A very common type of decade counter is the BCD (8421) 

counter, which exhibits a binary-coded-decimal sequence as shown in Table (2). 

As you can see, the BCD decade counter goes through a straight binary 

sequence through the binary 9 state, rather than going to the binary 10 state, it 

recycles to the 0 state. A synchronous BCD decade counter is shown in Fig. (6). 

Q) Design BCD decade counter using J-K F.F 

                     

 Excitation table of J-K F.F 
 

 

 

 

 

 

 

 

Present State Qt Next State Qt+1 JD KD JC KC JB KB JA KA 

D C B A D C B A 
0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X 
0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1 
0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X 
0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1 
0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X 
0 1 0 1 0 1 1 0 0 X X 0 1 X X 1 
0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X 
0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1 
1 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X 
1 0 0 1 0 0 0 0 X 1 0 X 0 X X 1 

Qt Q(t+1) J K 
0     0 0 X 
0 1 1 X 
1 0 X 1 
1 1 X 0 
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       JC= QB.QA 

                                         

 

 
 

    BA 
DC        

 
00 

 
01 

 
11 

 
10 

    00 0 0 1 0 

    01 X X X X 

    11 X X X  X 

    10 0 0 X X 

 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 1 X X 1 

    01 1 X X 1 

    11 X X X X 

    10 1 X X X 

             JA=1 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 X X X X 

    01 X X X X 

    11 X X X X 

    10 0 1 X X 

            kD= QD.QA 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 0 0 0 0 

    01 0 0 1 0 

    11 X X X X 

    10 X X X X 

           JD=QC.QB.QA 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 X X X X 

    01 0 0 1 0 

    11 X X X X 

    10 X X X X 

            kC=QB.QA 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 X X 1 0 

    01 X X 1 0 

    11 X X X X 

    10 X X X X 

              KB= Q’D .QA              

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

    00 0 1 X X 

    01 0 1 X X 

    11 X X X X 

    10 0 0 X X 

                   JB= Q’D .QA 

    BA 
DC       

 
00 

 
01 

 
11 

 
10 

      X 1 1 X 

     X 1 1 X 

 X X X X 

 X 1 X X 

              KA=1 
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Q) Design 3 bit counter using J-K F.F 

 
                     

 

 

 

 

 

 

 Excitation table of J-K F.F 
 

 

 

 

 

 

                                         
3 bit synchronous binary counter 

Present State Qt Next State Qt+1 JC KC JB KB JA KA 
C B A C B A 
0 0 0 0 0 1 0 X 0 X 1 X 
0 0 1 0 1 0 0 X 1 X X 1 
0 1 0 0 1 1 0 X X 0 1 X 
0 1 1 1 0 0 1 X X 1 X 1 
1 0 0 1 0 1 X 0 0 X 1 X 
1 0 1 1 1 0 X 0 1 X X 1 
1 1 0 1 1 1 X 0 X 0 1 X 
1 1 1 0 0 0 X 1 X 1 X 1 

Qt Q(t+1) J K 
0     0 0 X 
0 1 1 X 
1 0 X 1 
1 1 x 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 0 1 0 

     1 x x x x 

          JC= QB QA 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x x x 

     1 0 0 1 0 

          KC= QB QA 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 1 x x 

     1 0 1 x x 

          JB= QA 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x 1 0 

     1 x x 1 0 

          KB=QA 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 x x 1 

     1 1 x x 1 

          JA=1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 X 1 1 x 

     1 x 1 1 x 

          KA=1 
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Q) Design 3 bit counter using S-R F.F 

 
                     

 

 

 

 

 

 

 Excitation table of S-R F.F 
 

 

 

 

 

 

 
 

 
 
 
 

 
 
 

Present State Qt Next State Qt+1 SC RC SB RB SA RA 
C B A C B A 
0 0 0 0 0 1 0 X 0 X 1 0 
0 0 1 0 1 0 0 X 1 0 0 1 
0 1 0 0 1 1 0 X X 0 1 0 
0 1 1 1 0 0 1 0 0 1 0 1 
1 0 0 1 0 1 X 0 0 X 1 0 
1 0 1 1 1 0 X 0 1 0 0 1 
1 1 0 1 1 1 X 0 X 0 1 0 
1 1 1 0 0 0 0 1 0 1 0 1 

Qt Q(t+1) S R 
0     0 0 X 
0 1 1 0 
1 0 0 1 
1 1 x 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 1 0 x 

     1 0 1 0 x 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x 0 1 0 

     1 x 0 1 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 0 0 1 

     1 1 0 0 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 0 1 0 

     1 x x 0 x 

          SC= Q’C QB QA 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x 0 x 

     1 0 0 1 0 

          RC= QC QB QA 

          SB= Q’B QA           RB= QB QA           SA= Q’A 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 1 1 0 

     1 0 1 1 0 

          RA= QA 
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Q) Design 3 bit counter using T F.F 

 
Excitation table of T F.F 

 

 

 

 

 

 

 
 

 

 

Q) Design 3 bit counter using D F.F 

 
Excitation table of DF.F 

 

 

 
 

 

 

 

 

Present State Qt Next State Qt+1 TC TB TA 

C B A C B A 
0 0 0 0 0 1 0 0 1 
0 0 1 0 1 0 0 1 1 
0 1 0 0 1 1 0 0 1 
0 1 1 1 0 0 1 1 1 
1 0 0 1 0 1 0 0 1 
1 0 1 1 1 0 0 1 1 
1 1 0 1 1 1 0 0 1 
1 1 1 0 0 0 1 1 1 

Qt Q(t+1) T 
0     0 0 
0 1 1 
1 0 1 
1 1 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 0 1 0 

     1 0 0 1 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 1 1 0 

     1 0 1 1 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 1 1 1 

     1 1 1 1 1 

Present State Qt Next State Qt+1 DC DB DA 

C B A C B A 
0 0 0 0 0 1 0 0 1 
0 0 1 0 1 0 0 1 0 
0 1 0 0 1 1 0 1 1 
0 1 1 1 0 0 1 0 0 
1 0 0 1 0 1 1 0 1 
1 0 1 1 1 0 1 1 0 
1 1 0 1 1 1 1 1 1 
1 1 1 0 0 0 0 0 0 

Qt Q(t+1) D 
0     0 0 
0 1 1 
1 0 0 
1 1 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 0 1 0 

     1 1 1 0 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 1 0 1 

     1 0 1 0 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 0 0 1 

     1 1 0 0 1 

          TC = QB QA                                                        TB= QA                                                       TA= 1 

 

          DC = Q’CQBQA+ QCQ’B+ QCQ’A          DB=Q’BQA+QBQ’A=QB⊕QA            DA= Q’A  
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Q) Design 3 bit odd counter (1→3→5→7→1) using J-K F.F 

 
                     

 

 

 

 Excitation table of J-K F.F 
 

 

 

 

 

 

 

Q) Design 3 bit even counter (0→2→4→6→0) using T F.F 
Excitation table of T F.F 

 

 
 

 

 

 

 

 

Present State Qt Next State Qt+1 JC KC JB KB JA KA 
C B A C B A 
0 0 1 0 1 1 0 X 1 X x 0 
0 1 1 1 0 1 1 X x 1 x 0 
1 0 1 1 1 1 X 0 1 X x 0 
1 1 1 0 0 1 X 1 x 1 x 0 

Qt Q(t+1) J K 
0     0 0 X 
0 1 1 X 
1 0 X 1 
1 1 x 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x 1 x x 

     1 x 1 x x 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x 1 x 

     1 x x 1 x 

Present State Qt Next State Qt+1 TC TB TA 

C B A C B A 
0 0 0 0 1 0 0 1 0 
0 1 0 1 0 0 1 1 0 
1 0 0 1 1 0 0 1 0 
1 1 0 0 0 0 1 1 0 

Qt Q(t+1) T 
0     0 0 
0 1 1 
1 0 1 
1 1 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 x x 1 

     1 0 x x 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 x x 1 

     1 1 x x 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 0 x x 0 

     1 0 x x 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x 0 1 x 

     1 x x x x 

          JC= QB 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x x x 

     1 x 0 1 x 

          KC= QB 

          JB= 1 
          KB=1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x x x 

     1 x x x x 

          JA=1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x 0 0 x 

     1 x 0 0 x 

          KA=0 

          TB= 1 
           TA= 0                    

          TC= QB 
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Q) Design 3 bit down counter using J-K F.F 

 
                     

 

 

 

 

 

 

 Excitation table of J-K F.F 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Present State Qt Next State Qt+1 JC KC JB KB JA KA 
C B A C B A 
1 1 1 1 1 0 X 0 X 0 X 1 
1 1 0 1 0 1 X 0 X 1 1 X 
1 0 1 1 0 0 X 0 0 X X 1 
1 0 0 0 1 1 X 1 1 X 1 X 
0 1 1 0 1 0 0 X X 0 X 1 
0 1 0 0 0 1 0 X X 1 1 X 
0 0 1 0 0 0 0 X 0 X X 1 
0 0 0 1 1 1 1 X 1 X 1 X 

Qt Q(t+1) J K 
0     0 0 X 
0 1 1 X 
1 0 X 1 
1 1 x 0 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 0 x x 

     1 1 0 x x 
   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x 0 1 

     1 x x 0 1 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 x x 1 

     1 1 x x 1    BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 X 1 1 x 

     1 x 1 1 x 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 1 0 0 0 

     1 x x x x 

          JC= Q’B Q’A 

   BA 
C       

 
00 

 
01 

 
11 

 
10 

     0 x x x x 

     1 1 0 0 0 

          KC= Q’B Q’A 

          JB= Q’A 

          KB=Q’A 

          JA=1 

          KA=1 
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Q) Design 3 bit up-down counter using T F.F 

When x=0 up counter: (000→111), when x=1 down counter: (111→000) 

Excitation table of T F.F 

 

 

 

  

                        

          

 

 

 

 

 

 

 

 

 

 

Present State Qt Up when x=0 
Next State Qt+1 

Down when x=1 
Next State Qt+1 

Up x=0 Down x=1 
TC TB TA TC TB TA 

C B A C B A C B A 
0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 
0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 
0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 
0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 
1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 
1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 
1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 
1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 

Qt Q(t+1) T 
0     0 0 
0 1 1 
1 0 1 
1 1 0 

 

    AX 
CB       

 
00 

 
01 

 
11 

 
10 

    00 1 1 1 1 

    01 1 1 1 1 

    11 1 1 1 1 

    10 1 1 1 1 

             TA= 1 

    AX 
CB       

 
00 

 
01 

 
11 

 
10 

    00 0 1 0 1 

    01 0 1 0 1 

    11 0 1 0 1 

    10 0 1 0 1 

          TB=QA X’ +  Q’A X   

                     = QA ⊕ X                      

 

    AX 
CB       

 
00 

 
01 

 
11 

 
10 

    00 0 1 0 0 

    01 0 0 0 1 

    11 0 0 0 1 

    10 0 1 0 0 

 TC= QB QAX’+ QB Q’AX 

     = QB(QAX’+ QB Q’AX) 

     = QB(QA⊕ X) 
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Homework 

Q1) Design 3 bit odd counter using T F.F 

Q2) Design 3 bit even counter using J-K F.F 

Q3) Design 3 bit down counter using T F.F 

Q4) Design 3 bit down odd counter using J-K F.F 

Q5) Design 3 bit down odd counter using T F.F 

Q6) Design 3 bit down even counter using J-K F.F 

Q7) Design 3 bit down even counter using T F.F 

Q8) Design 3 bit gray code (000→001→011→010→110→111→101→100→000) 

counter using J-K F.F, then using T F.F) 
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Shift Register 

Register: Is a group of binary cells suitable for holding binary information. 

Any binary machine is said to have a particular "Word Length". These terms defines 

the number of bits required to represent data, 

In other words, a machine which said to have a four-bit word length has its flip flops 

arranged in groups of four. The group of flip flops are consider as a single unit called 

a "Register". 

The binary number is "Shifted" one bit at time from one flip flop to the next. The 

device used in this type of transfer operation it called a "Shift Register" 

A shift register is a series of interconnected flip flops used for temporary storage of 

data as shown in Fig. (1). The output of one flip flop becomes the input of another, 

all the flip flops in the shift register have a common clock signal connection and all 

can be set or reset at the same time. Because the data were loaded to the circuit one 

bit after another and the shift register shifted them from one flip flop to another, this 

sequence is referred to as serial data loading and the circuit is called a "4-BIT 

SERIAL IN-SERIAL OUT SHIFT REGISTER" as shown in the following figure. 
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Clock D1 D2 D3 D4 Q1 Q2 Q3 Q4 

1 1 0 0 0 1 0 0 0 

2 1 1 0 0 1 1 0 0 

3 1 1 1 0 1 1 1 0 

4 1 1 1 1 1 1 1 1 

 

This type of shift register accepts digital data serially that is one bit at the time on 

one line. It produces the stored information on its output also in serial form. 

The alternative to serial loading of the shift register is parallel loading, for a register 

with parallel data input, the bits are entered simultaneously into their respective 

stages on parallel-lines, rather than on a bit-by-bit basis on one line as with serial 

data inputs. The following figure Shows a "4 BIT PARALLEL IN-PARALLEL 

OUT REGISTER". In the parallel output register the output of each stage is 

available, once the data are stored, each bit appears on its respective output line and 

all bits are available simultaneously, rather than on a bit-by-bit basis as with the 

serial output. 
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Clock D1 D2 D3 D4 Q1 Q2 Q3 Q4 

1 1 0 1 1 1 0 1 1 

2 0 1 0 1 0 1 0 1 

3 1 1 1 0 1 1 1 0 

 

If the data are loaded serially and read out in parallel, the shift register is 

functioning as a "SERIAL-TO-PARALLEL CONVERTER". If the data is 

loaded in parallel and shifted out serially, the shift register is functioning as a 

"PARALLEL-TO-SERIAL CONVERTER". Some shift registers are configured 

to allow shifting the data in both the right and left direction. These shift registers 

are usually called "Universal Shift Register", because they can shift data in either 

right or left direction, can load data either serially or in parallel and can output 

data either serially or in parallel. 

Notes:- 

• A register is a digital electronic device capable of storing several bits of data: 

- Normally made from D-type flip-flops. 

- Multiple flip flops can be combined to form a data register Shift registers 

allow data to be transported one bit at a time. 

-Registers also allow for parallel transfer, many bits transferred at the same 

time. 

• Operation 

– Data input is stored in the flip-flop on the +/- ve edge of the clock. 

– The data can be read from the Q outputs 

– New data can be reloaded by re-CLOCKing the register 

 

 


