

Digital Design (Lecture -1-)

1

Textbooks:

1. Digital Design, Morris M. Mano, (3rd Edition), Prentice Hall, 2002

2. Digital Fundamentals, Thomas L. Floyd, (9th Edition), Prentice Hall, 2006

3. Microprocessor Architecture, Programming, and Applications with the 8085, by

R. Gaonkar.

Overview

 The design of computers
•It all starts with numbers
•Building circuits
•Building computing machines

 Digital systems

 Understanding decimal numbers

 Binary and octal numbers
•The basis of computers!

 Conversion between different number systems

Digital Design (Lecture -1-)

2

Digital Systems

 Digital systems consider discrete amounts of data.
Examples

•26 letters in the alphabet
•10 decimal digits

 Larger quantities can be built from discrete values:
•Words made of letters
•Numbers made of decimal digits (e.g. 239875.32)

 Computers operate on binary values (0 and 1)

 Easy to represent binary values electrically
•Voltages and currents.
•Can be implemented using circuits
•Create the building blocks of modern computers

Understanding Decimal Numbers

•Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)
•But how many items does a decimal number represent?

8653 = 8*103+ 6*102 + 5*101 + 3*100
•What about fractions?

97654.35 = 9*104+ 7*103 + 6*102 + 5*101 + 4*100+ 3*10-1 + 5*10-2
•In formal notation -> (97654.35)10

Understanding Binary Numbers
•Binary numbers are made of binary digits (bits): 0 and 1
•How many items does a binary number represent?

(1011)2= 1*23+ 0*22 + 1*21 + 1*20 = (11)10
•What about fractions?

 (110.10)2= 1*22 + 1*21 + 0*20+ 1*2-1 + 0*2-2
•Groups of eight bits are called a byte

 (11001001)2
•Groups of four bits are called a nibble.

(1101)2

Digital Design (Lecture -1-)

3

Why Use Binary Numbers?

 Easy to represent 0 and 1 using
electrical values.

 Possible to tolerate noise.

 Easy to transmit data

 Easy to build binary circuits.

Conversion Between Number Bases

 Learn to convert between bases.
 Already demonstrated how to convert from binary to decimal.

Digital Design (Lecture -1-)

4

Convert an Integer from Decimal to another Base
For each digit position:

1. Divide decimal number by the base (e.g. 2)

2. The remainder is the lowest-order digit3.Repeat first two steps until no divisor

remains.

Convert an Fraction from Decimal to another Base1.

1. Multiply decimal number by the base (e.g. 2)

2. The integer is the highest-order digit

3. Repeat first two steps until fraction becomes zero.

Digital Design (Lecture -1-)

5

The Growth of Binary Numbers

Binary Addition
 Binary addition is very simple.

 This is best shown in an example of adding two binary numbers…

Binary Subtraction
 We can also perform subtraction (with borrows in place of carries).

 Let’s subtract (10111)2 from (1001101)2…

Binary Multiplication
Binary multiplication is much the same as decimal multiplication, except that the

multiplication operations are much simpler…

Digital Design (Lecture -1-)

6

Convert an Integer from Decimal to Octal
1. Divide decimal number by the base (8)

2. The remainder is the lowest-order digit

3. Repeat first two steps until no divisor remains.

Convert an Fraction from Decimal to Octal
1. Multiply decimal number by the base (e.g. 8)

2. The integer is the highest-order digit

3. Repeat first two steps until fraction becomes zero.

Digital Design (Lecture -1-)

7

Understanding Hexadecimal Numbers

Putting It All Together

Digital Design (Lecture -1-)

8

Converting Between Base 16 and Base 2

°Conversion is easy!

 Determine 4-bit value for each hex digit

°Note that there are 24= 16 different values of four bits

°Easier to read and write in hexadecimal.

°Representations are equivalent!

Converting Between Base 16 and Base 8

1. Convert from Base 16 to Base 2
2. Regroup bits into groups of three starting from right
3. Ignore leading zeros
4. Each group of three bits forms an octal digit.

Digital Design (Lecture -2-)

9

Signed Numbers
How to Represent Signed Numbers
•Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc.

•For computers, desirable to represent everything as bits.

•Three types of signed binary number representations: signed magnitude, 1’s

complement, 2’s complement.

•In each case: left-most bit indicates sign: positive (0) or negative (1).

Consider signed magnitude:

One’s Complement Representation
•The one’s complement of a binary number involves inverting all bits.

•1’s comp of 00110011 is 11001100

•1’s comp of 10101010 is 01010101

•For an n bit number N the 1’s complement is (2n-1) –N.

•Called diminished radix complement by Mano since 1’s complement for base

(radix 2).

•To find negative of 1’s complement number take the 1’s complement.

Digital Design (Lecture -2-)

10

Two’s Complement Representation
•The two’s complement of a binary number involves inverting all bits and adding

1.

•2’s comp of 00110011 is 11001101

•2’s comp of 10101010 is 01010110

•For an n bit number N the 2’s complement is (2n-1) –N + 1.

•Called radix complement by Mano since 2’s complement for base (radix 2).

•To find negative of 2’s complement number take the 2’s complement.

Two’s Complement Shortcuts
°Algorithm –Simply complement each bit and then add 1 to the result.

•Finding the 2’s complement of (01100101)2and of its 2’s complement…

Digital Design (Lecture -2-)

11

1’s Complement Addition
°Using 1’s complement numbers, adding numbers is easy.

°For example, suppose we wish to add +(1100)2 and +(0001)2.

°Let’s compute (12)10+ (1)10.

•(12)10= +(1100)2 = 011002 in 1’s comp.

•(1)10= +(0001)2= 000012 in 1’s comp.

°Adding the carry bit, the sign bit is seen to be zero, indicating a positive result,

(01101)2= +(1101)2= +(13)10

1’s Complement Subtraction
°Using 1’s complement numbers, subtracting numbers is also easy.

°For example, suppose we wish to subtract +(0001)2 from + (1100)2.

°Adding the carry bit, the sign bit is seen to be zero, indicating a positive result,

(01011)2= +(1011)2= +(11)10

Digital Design (Lecture -2-)

12

2’s Complement Addition
°Using 2’s complement numbers, adding numbers is easy.

°For example, suppose we wish to add +(1100)2 and +(0001)2.

°Let’s compute (12)10 + (1)10.

•(12)10= +(1100)2 = 011002 in 2’s comp.

•(1)10= +(0001)2= 000012 in 2’s comp.

°Discarding the carry bit, the sign bit is seen to be zero, indicating a positive result,

(01101)2= +(1101)2= +(13)10

2’s Complement Subtraction
°Using 2’s complement numbers, follow steps for subtraction

 °For example, suppose we wish to subtract +(0001)2 from + (1100)2.

°Discarding the carry bit, the sign bit is seen to be zero, indicating a positive result,

(01011)2= +(1011)2= +(11)10

Digital Design (Lecture -2-)

13

2’s Complement Subtraction: Example #2
°Let’s compute (13)10–(5)10.

•(13)10= +(1101)2= (01101)2

•(-5)10= -(0101)2= (11011)2

°Adding these two 5-bit codes…

°Discarding the carry bit, the sign bit is seen to be zero, indicating a positive result,

(01000)2= +(1000)2= +(8)10

2’s Complement Subtraction: Example #3
°Let’s compute (5)10–(12)10.

•(-12)10= -(1100)2= (10100)2

•(5)10= +(0101)2= (00101)2

°Adding these two 5-bit codes…

°Here, there is no carry bit and the sign bit is 1. This indicates a negative result,

which is what we expect. (11001)2= -(7)10.

Digital Design (Lecture -2-)

14

Digital Design (Lecture -2-)

15

Digital Design (Lecture -2-)

16

Parity Codes
°Parity codes are formed by concatenating a parity bit, P to each code word of C.
°In an odd-parity code, the parity bit is specified so that the total number of ones is
odd.
°In an even-parity code, the parity bit is specified so that the total number of ones
is even.

Parity Code Example
°Concatenate a parity bit to the ASCII code for the characters 0, X, and = to

produce both odd-parity and even-parity codes.

Digital Design (Lecture -3-)

17

Boolean Algebra and Logic Gates

Combinational Circuit: The outputs at any instance of time are entirely

dependent upon the inputs present at that time.

°Analysis problem:

•Determine binary outputs for each combination of inputs
°Design problem: given a task, develop a circuit that accomplishes the task
•Many possible implementation
•Try to develop “best” circuit based on some criterion (size, power, performance,
etc.)
Describing Circuit Functionality: Inverter

°Basic logic functions have symbols.
°The same functionality can be represented with truth tables.
•Truth table completely specifies outputs for all input combinations.
°The above circuit is an inverter.
•An input of 0 is inverted to a 1.
•An input of 1 is inverted to a 0.

Digital Design (Lecture -3-)

18

Digital Design (Lecture -3-)

19

Describing Circuit Functionality: Waveforms

°Waveforms provide another approach for representing functionality.
°Values are either high (logic 1) or low (logic 0).
°Can you create a truth table from the waveforms?

Consider three-input gates

Digital Design (Lecture -3-)

20

Boolean Algebra
•A Boolean algebra is defined as a closed algebraic system containing a set K or
two or more elements and the two operators, . and +.

•Useful for identifying and minimizing circuit functionality
•Identity elements

a + 0 = a
a . 1 = a

•0 is the identity element for the + operation.
•1 is the identity element for the . operation.

Commutativity and Associativity of the Operators
•The Commutative Property:

For every a and b in K,
a + b = b + a
a . b = b . a

•The Associative Property:
For every a, b, and c in K,

 a + (b + c) = (a + b) + c
 a . (b . c) = (a . b) . c

Distributivity of the Operators and Complements
•The Distributive Property:
For every a, b, and c in K,

 a + (b . c) = (a + b) . (a + c)
 a . (b + c) = (a . b) + (a . c)

•The Existence of the Complement:
For every a in K there exists a unique element called a’(complement of a) such

that,
 a + a’= 1
 a . a’= 0

•To simplify notation, the . operator is frequently omitted. When two elements are
written next to each other, the AND (.) operator is implied…

 a + b . c = (a + b) . (a + c)
 a + bc= (a + b)(a + c)

Digital Design (Lecture -3-)

21

Duality
•The principle of duality is an important concept. This says that if an expression is
valid in Boolean algebra, the dual of that expression is also valid.

•To form the dual of an expression, replace all + operators with . operators, all .
operators with + operators, all ones with zeros, and all zeros with ones.

•Form the dual of the expression
a + (bc) = (a + b)(a + c)

•Following the replacement rules…
a(b + c) = ab+ ac

•Take care not to alter the location of the parentheses if they are present.

Involution
•This theorem states:

a’’= a
 Remember that aa’= 0 and a+a’=1.
•Therefore, a’ is the complement of a and a is also the complement of a’.
•As the complement of a’ is unique, it follows that a’’=a.
 Taking the double inverse of a value will give the initial value.

Absorption
•This theorem states:

a + ab= a a(a+b) = a
•To prove the first half of this theorem:

a + ab = a . 1 + ab
= a (1 + b)
= a (b + 1)
= a (1)

 = a

Digital Design (Lecture -3-)

22

DeMorgan’sTheorem
•A key theorem in simplifying Boolean algebra expression is
DeMorgan’sTheorem. It states:

(a + b)’= a’b’ (ab)’= a’+ b’

•Complement the expression a(b + z(x + a’)) and simplify.

(a(b+z(x + a’)))’= a’+ (b + z(x + a’))’

= a’+ b’(z(x + a’))’
= a’+ b’(z’+ (x + a’)’)
= a’+ b’(z’+ x’a’’)
= a’+ b’(z’+ x’a)

•Basic logic functions can be made from AND, OR, and NOT (invert) functions
•The behavior of digital circuits can be represented with waveforms, truth tables,

or symbols
•Primitive gates can be combined to form larger circuits
•Boolean algebra defines how binary variables can be combined
•Rules for associativity, commutativity, and distribution are similar to algebra
•DeMorgan’srules are important.
 Will allow us to reduce circuit sizes.

The following table lists the most basic relations of Boolean algebra. All the
relations can be proven by means of truth tables:

X+0=X X.0=0

X+1=1 X.1=X

X+X=X X.X=X

X+X’=1 X.X’=0

X+Y=Y+X XY=YX

X+(Y+Z)=(X+Y)+Z X(YZ)=(XY)Z

X(Y+Z)=XY+XZ X+YZ=(X+Y)(X+Z)

(X+Y)’=X’Y’ (XY)’=X’+Y’

X’’=X X+X’Y=X+Y

X+XY=X X(X+Y)=X

XY+XY’=X (X+Y)(X+Y’)=X

Digital Design (Lecture -3-)

23

Boolean Functions
•Boolean algebra deals with binary variables and logic operations.
•Function results in binary 0 or 1

•Boolean algebra deals with binary variables and logic operations.
•Function results in binary 0 or 1

Truth Table to Expression
•Converting a truth table to an expression
•Each row with output of 1 becomes a product term
•Sum product terms together.

Digital Design (Lecture -3-)

24

Equivalent Representations of Circuits
•All three formats are equivalent
•Number of 1’s in truth table output column equals AND terms for Sum-of-
Products (SOP)

Reducing Boolean Expressions
•Is this the smallest possible implementation of this expression? No!
•Use Boolean algebra rules to reduce complexity while preserving functionality.
•Step 1: Use Theorum1 (a + a = a)

 So xyz + xyz’+ x’yz= xyz + xyz + xyz’+ x’yz
•Step 2: Use distributive rule a(b + c) = ab+ ac
 So xyz+ xyz+ xyz’+ x’yz= xy(z+ z’) + yz(x+ x’)
•Step 3: Use Postulate 3 (a + a’= 1)

 So xy(z+ z’) + yz(x+ x’) = xy.1 + yz.1
•Step 4: Use Postulate 2 (a . 1 = a)

 So xy.1 + yz.1 = xy+ yz= xyz + xyz’+ x’yz

Reduced Hardware Implementation
•Reduced equation requires less hardware!
•Same function implemented!

Digital Design (Lecture -4-)

25

Sum of Product (SOP) and Product of Sum (POS)

Minterms and Maxterms
•Each variable in a Boolean expression is a literal
•Boolean variables can appear in normal (x) or complement form (x’)
•Each AND combination of terms is a minterm
•Each OR combination of terms is a maxterm

Representing Functions with Minterms
•Minterm number same as row position in truth table (starting from top from 0)
•Shorthand way to represent functions

This format is called Sum Of Product (SOP)

Digital Design (Lecture -4-)

26

Complementing Functions
•Minterm number same as row position in truth table (starting from top from 0)
•Shorthand way to represent functions

Complementation Example
•Find complement of F = x’z+ yz This format is called sum of product
 F’= (x’z+ yz)’
•DeMorgan’s
 F’= (x’z)’(yz)’
•DeMorgan’s
 F’= (x’’+z’)(y’+z’)
•Reduction -> eliminate double negation on x
 F’= (x+z’)(y’+z’) This format is called product of sums

Conversion Between Canonical Forms
•Easy to convert between minterm and maxterm representations
•For maxterm representation, select rows with 0’s

This format is called Product Of Sum (POS)

Digital Design (Lecture -4-)

27

Representation of Circuits
•All logic expressions can be represented in 2-level format
•Circuits can be reduced to minimal 2-level representation
•Sum of products representation most common in industry.

Q) Assume the output (1,0,1,0, 1,0,1,0):

1- Construct the truth table

2- Find the Expression using sum of product then simplify the expression and draw the logic
circuit diagram

3- Find the Expression using product of sum

2) F= A’B’C’ + A’BC’ + AB’C’ + ABC’ =m0+m2+m4+m6=∑(0,2,4,6)

 =A’C’(B’+B)+AC’(B’+B)= A’C’(1)+AC’(1)=A’C’+AC’=C’(A’+A)= C’(1)=C’

F= (A+B+C’) (A+B’+C’) (A’+B+C’) (A’+B’+C’)=M1M3M5M7=∏(1,3,5,7)

Inputs Output
F

A B C
0 0 0 1 A’B’C’ m0
0 0 1 0 m1
0 1 0 1 A’BC’ m2
0 1 1 0 m3
1 0 0 1 AB’C’ m4
1 0 1 0 m5
1 1 0 1 ABC’ m6
1 1 1 0 m7

Inputs Output
F

A B C
0 0 0 1 M0
0 0 1 0 A+B+C’ M1
0 1 0 1 M2
0 1 1 0 A+B’+C’ M3
1 0 0 1 M4
1 0 1 0 A’+B+C’ M5
1 1 0 1 M6
1 1 1 0 A’+B’+C’ M7

3)

1)

Digital Design (Lecture -4-)

28

NAND and NOR Gates

The NAND Gate
•These three properties show that a NAND gate with both of its inputs driven by

the same signal is equivalent to a NOT gate
•A NAND gate whose output is complemented is equivalent to an AND gate, and a

NAND gate with complemented inputs acts as an OR gate.
•Therefore, we can use a NAND gate to implement all three of the elementary

operators (AND,OR,NOT).
•Therefore, ANY switching function can be constructed using only NAND gates.

Such a gate is said to be primitive or functionally complete.

Digital Design (Lecture -4-)

29

Functionally Complete Gates
•Just like the NAND gate, the NOR gate is functionally complete…any logic

function can be implemented using just NOR gates.
•Both NAND and NOR gates are very valuable as any design can be realized using

either one.
•It is easier to build an IC chip using all NAND or NOR gates than to combine

AND,OR, and NOT gates.
•NAND/NOR gates are typically faster at switching and cheaper to produce.

Digital Design (Lecture -4-)

30

NAND and XOR Implementations Combinational Design Procedure

Digital Design (Lecture -4-)

31

Digital Design (Lecture -4-)

32

Q) Convert to NAND gate only then to NOR gate only

1) X=(B+C)(A+D)

=()()

=() ()

=() ()

=() ()

X=(B+C)(A+D)

=()()

=() ()

) () ()

 () ()

=() ()

=() ()

 () ()

 () ()

 () ()

=() ()

() ()

Digital Design (Lecture -4-)

33

3) K=(AB)+(C+D)

=() ()

=()()

=()()

=()()

=()()

 K=(AB)+(C+D)

=() ()

=() ()

=(()

=(()

Digital Design (Lecture -5-)

34

Minimization with Karnaugh Maps

Karnaugh maps
 Alternate way of representing Boolean function

•All rows of truth table represented with a square

•Each square represents a minterm

 Easy to convert between truth table, K-map, and SOP

•Unoptimized form: number of 1’s in K-map equal number of minterms (products)

in SOP

•Optimized form: reduced number of minterms

Two variable maps
It can be represented as follow:

Or represented as follow:

•A Karnaugh map is a graphical tool for assisting in the general simplification

procedure.

 y
x

0

1

 0 m0 m1

 1 m2 m3

 x
y

0

1

 0 m0 m2

 1 m1 m3

 x
y

0

1

 0 x’y’ xy’

 1 x’y xy

Digital Design (Lecture -5-)

35

Three variable maps
It can be represented as follow:

 BC
A

00

01

11

10

 0 m0 m1 m3 m2

 1 m4 m5 m7 m6

Or represented as follow:

 A
BC

0

1

 00 m0 m4

 01 m1 m5

 11 m3 m7

 10 m2 m6

 BC
A

00

01

11

10

 0 A’B’C’ A’B’C A’BC A’BC’

 1 AB’C’ AB’C ABC ABC’

 A
BC

0

1

 00 A’B’C’ AB’C’

 01 A’B’C AB’C

 11 A’BC ABC

 10 A’BC’ ABC’

Digital Design (Lecture -5-)

36

Rules for K-Maps

 We can reduce functions by circling 1’s in the K-map

 Each circle represents minterm reduction

 Following circling, we can deduce minimized and-or form.

Rules to consider

 Every cell containing a 1 must be included at least once.

 The largest possible “power of 2 rectangle must be enclosed.

 The 1’s must be enclosed in the smallest possible number of rectangles.

A Karnaugh map is a graphical tool for assisting in the general simplification

procedure.

Digital Design (Lecture -5-)

37

Karnaugh Maps for Four Input Functions
 Represent functions of 4 inputs with 16 minterms
 Use same rules developed for 3-input functions
 Note bracketed sections shown in example.

‘or represented as follow:

Karnaugh map: 4-variable example

F(A,B,C,D) =Σm(0,2,3,5,6,7,8,10,11,14,15)

 F=C+A’BD+B’D’

 WX
YZ

00

01

11

10

 00 m0 m4 m12 m8

 01 m1 m5 m13 m9

 11 m3 m7 m15 m11

 10 m2 m6 m14 m10

 WX
YZ

00

01

11

10

 00 W’X’Y’Z’ W’XY’Z’ WXY’Z’ WX’Y’Z’

 01 W’X’Y’Z W’XY’Z WXY’Z WX’Y’Z

 11 W’X’YZ W’XYZ WXYZ WX’YZ

 10 W’X’YZ’ W’XYZ’ WXYZ’ WX’YZ’

Inputs F
A B C D
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

 CD
AB

00

01

11

10

 00 1 0 1 1

 01 0 1 1 1

 11 0 0 1 1

 10 1 0 1 1

Digital Design (Lecture -5-)

38

Karnaugh maps: Don’t cares
 In some cases, outputs are undefined
 We “don’t care” if the logic produces a 0 or a 1
 This knowledge can be used to simplify functions.

Digital Design (Lecture -5-)

39

Don’t Care Conditions
 In some situations, we don’t care about the value of a function for certain

combinations of the variables.

•these combinations may be impossible in certain contexts

•or the value of the function may not matter in when the combinations occur

 In such situations we say the function is incompletely specified and there are

multiple (completely specified) logic functions that can be used in the design.

•so we can select a function that gives the simplest circuit

 When constructing the terms in the simplification procedure, we can choose to

either cover or not cover the don’t care conditions.

Map Simplification with Don’t Cares

•Alternative covering.

Digital Design (Lecture -5-)

40

More KarnaughMap Examples

Digital Design (Lecture -5-)

41

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(A,B,C,D)= ∑ (0,2,4,5,6,7,8,10,13,15)

 CD
AB

00

01

11

10

 00 1 0 0 1

 01 1 1 1 1

 11 0 1 1 0

 10 1 0 0 1

 F=A’B+BD+B’D’

 =A’B+(B⊙D)

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(A,B,C,D)=∑(1,3,4,5,10-15)

 CD
AB

00

01

11

10

 00 0 1 1 0

 01 1 1 0 0

 11 1 1 1 1

 10 0 0 1 1

 F=BC’+AC+A’B’D

Inputs F
A B C D
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Inputs F
A B C D
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Digital Design (Lecture -5-)

42

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(A,B,C,D)= ∏(1,3,9,11,12,14)

 CD
AB

00

01

11

10

 00 1 0 0 1

 01 1 1 1 1

 11 0 1 1 0

 10 1 0 0 1

 F=A’B+BD+B’D’

 =A’B+(B⊙D)

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(A,B,C,D)= ∏(0,2,6-9)

 CD
AB

00

01

11

10

 00 0 1 1 0

 01 1 1 0 0

 11 1 1 1 1

 10 0 0 1 1

 F=BC’+AC+A’B’D

Inputs F
A B C D
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Inputs F
A B C D
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Digital Design (Lecture -5-)

43

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(X,Y,Z)= X’Y’+YZ+X’YZ’

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(W,X,Y,Z)= WXY+X’Z’+W’XZ

 YZ
WX

00

01

11

10

 00 1 0 0 1

 01 0 1 1 0

 11 0 0 1 1

 10 1 0 0 1

 F=X’Z’+W’XZ+WXY

Inputs Output
F X Y Z

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Inputs F
W X Y Z
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

 YZ
X

00

01

11

10

 0 1 1 1 1

 1 0 0 1 0

 F=X’+YZ

Digital Design (Lecture -5-)

44

Q) Use a Karnaugh map to reduce the expression to a minimum SOP and minimum POS form

F(X,Y,Z)= X’Z’+Y’Z’+YZ’+XY

Q) Use a Karnaugh map to reduce the expression to a minimum SOP and minimum POS form,
then draw both logic circuit

F(A,B,C,D)= ∑(0,2,5,6,7,8,10)

 CD
AB

00

01

11

10

 00 1 0 0 1

 01 0 1 1 1

 11 0 0 0 0

 10 1 0 0 1

 F=A’BD+A’BC+B’D’ SOP

 CD
AB

00

01

11

10

 00 1 0 0 1

 01 0 1 1 1

 11 0 0 0 0

 10 1 0 0 1

 F=(A’+B’)(B’+C+D)(B+D’) POS

Inputs F
A B C D
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

 YZ
X

00

01

11

10

 0 1 0 0 1

 1 1 0 1 1

 F=Z’+XY SOP

 YZ
X

00

01

11

10

 0 1 0 0 1

 1 1 0 1 1

 F=(X+Z’)(Y+Z’) POS

Inputs Output
F X Y Z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Digital Design (Lecture -5-)

45

Q) Use a Karnaugh map to reduce the expression to a minimum SOP form

F(X,Y,Z)= ∑m(0,1,2,4,5)+ d(3,6,7)

Q) Use a Karnaugh map to reduce the expression to a minimum SOP and minimum POS form,
then draw both logic circuit

F(A,B,C,D)= ∑m(0,1,2,3,7,8,10)+d(5,6,11,15)

 CD
AB

00

01

11

10

 00 1 1 1 1

 01 0 X 1 X

 11 0 0 X 0

 10 1 0 X 1

 F=A’D+B’D’ SOP

 CD
AB

00

01

11

10

 00 1 1 1 1

 01 0 X 1 X

 11 0 0 X 0

 10 1 0 X 1

 F=(A’+D’)(B’+D) POS

Inputs Output
F X Y Z

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 X
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

Inputs F
A B C D
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 X
0 1 1 0 X
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 X
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 X

 YZ
X

00

01

11

10

 0 1 1 X 1

 1 1 1 X X

 F=1

Digital Design (Lecture -6-)

46

Exclusive-OR and Exclusive-NOR Circuits
Exclusive-OR (XOR) produces a HIGH output whenever the two inputs are at

opposite levels.

Controlled Inverter:
The XOR gate can be used as a "NOT" gate by connecting one of the inputs to the
logic (1), for this reason it can be used to complement the 1st input by using the 2nd
input as control line, when control signal is logic (0) then, X = A. When control
signal is logic (1) then, X A’

Exclusive-NOR (XNOR): Exclusive-NOR (XNOR) produces a HIGH output

whenever the two inputs are at the same level.

Digital Design (Lecture -6-)

47

Exclusive-NOR Circuits
XNOR gate may be used to simplify circuit implementation.

XOR Function

XOR function can also be implemented with AND/OR gates (also NANDs).

X

 x⊕y

y

Digital Design (Lecture -6-)

48

XOR Function
 Even function –even number of inputs are 1, the output will be 1.

 Odd function –odd number of inputs are 1, the output will be 1.

A B C Even
Function

Odd
Function

0 0 0 1 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

Odd Function:
F= A’B’C+A’BC’+AB’C’+ABC

 =C(A’B’+AB)+C’(A’B+AB’)

 =C(A⊕B)’+C’(A⊕B)

 =A⊕B⊕C

Digital Design (Lecture -6-)

49

Q) Design even and odd parity

 Even parity – even number of inputs are 1, the output will be 0.

 Odd parity –odd number of inputs are 1, the output will be 0.

D3 D2 D1 D0 Even
parity P

Odd
parity Y

0 0 0 0 0 1
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 1

P= D’3D’2D’1D0+ D’3D’2D1D’0+ D’3D2D’1D’0+ D’3D2D1D0+ D3D2D’1D0+ D3D2D1D’0+ D3D’2D’1D’0+ D3D’2D1D0

 =(D3⊕D2)⊕(D1⊕D0)

Y=P’

 P

Digital Design (Lecture -6-)

50

D3 D2 D1 D0 Even
parity

P

Even
Parity

Checker E
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0

E=P⊕((D3⊕D2)⊕(D1⊕D0))

Digital Design (Lecture -6-)

51

BCD to Seven Segment

 Used to display binary coded decimal (BCD) numbers using seven illuminated

segments.
 BCD uses 0’s and 1’s to represent decimal digits 0 -9. Need four bits to represent

required 10 digits.
 Binary coded decimal (BCD) represents each decimal digit with four bits

List the segments that should be illuminated for each digit.
0: a,b,c,d,e,f
1: b,c
2: a,b,d,e,g
3: a,b,c,d,g
4: b,c,f,g
5: a,c,d,f,g
6: a,c,d,e,f,g
7: a,b,c
8: a,b,c,d,e,f,g
9: a,b,c,d,f,g

 Derive the truth table for the circuit. Each output column in one circuit.

No. A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 1 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 1 0 1 1

 a

 f g b

 e c

 d

Digital Design (Lecture -6-)

52

 Find minimal sum-of-products representation for each output
For segment “a”:

Note: Have only filled in ten squares, corresponding to the ten numerical digits we
wish to represent.

 Fill in don’t cares for undefined outputs. Leads to a reduced implementation
•Note that these combinations of inputs should never happen.
Put in “X” (don’t care), and interpret as either 1 or 0 as desired ….

 Circle biggest group of 1’s and Don’t Cares. Leads to a reduced implementation.

All 1’s should be covered by at least one implicant
 Put all the terms together
 Generate the circuit

 CD
AB

00

01

11

10

 00 1 0 1 1

 01 0 1 1 1

 11

 10 1 1

 CD
AB

00

01

11

10

 00 1 0 1 1

 01 0 1 1 1

 11 X X X X

 10 1 1 X X

Digital Design (Lecture -6-)

53

a=A+C+BD+B’D’ b=B’+C’D’+CD

=A+C+(B⊙D) =B’+(C⊙D) c=C’+D+B

Homework

Design circuits for segments d, e, f, and g of seven segments to display BCD
numbers

 CD
AB

00

 00 1 1 1 1

 01 1 0 1 0

 11 X X X X

 10 1 1 X X

 CD
AB

00

01

11

10

 00 1 0 1 1

 01 0 1 1 1

 11 X X X X

 10 1 1 X X

 CD
AB

00

01

11

10

 00 1 1 1 0

 01 1 1 1 1

 11 X X X X

 10 1 1 X X

Digital Design (Lecture -7-)

54

Binary Addition and Subtraction
Half adder

Add two binary numbers

X,Y: single bit inputs

S: single bit sum, C: carry out

X Y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

S= X’Y+XY’= (X⊕Y)

C: XY

Full adder

Full adder includes carry in Cin
A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 X S

 Y

 C

 BC
A

00

01

11

10

 0 0 1 0 1

 1 1 0 1 0

 S = A’B’ Cin+ A’BC’in+

 AB’ C’in+ ABCin

 = Cin(A’B’+AB)+ C’in(A’B+AB’)

 = Cin(A⊕B)’+ C’in(A⊕B)

 = Cin⊕A⊕B

 BC
A

00

01

11

10

 0 0 0 1 0

 1 0 1 1 1

 Cout= ACin+AB+BCin

Cout= A’BCin+ A B’Cin+ ABC’in+ ABCin

= A’BCin+ ABCin+ AB’Cin+ ABCin+ ABC’in+ ABCin

= (A’+ A)BCin+ (B’+ B)ACin+ (C’in+ Cin)AB

= 1·BCin + 1·ACin+ 1·AB

= BCin+ ACin+ AB

Digital Design (Lecture -7-)

55

 Full adder made of several half adders

 Hardware repetition simplifies hardware design

A full adder can be made from two half adders (plus an OR gate).

Digital Design (Lecture -7-)

56

 Putting it all together
•Single-bit full adder
•Common piece of computer hardware

4-Bit Adder
Chain single-bit adders together.
What does this do to delay?

Digital Design (Lecture -7-)

57

Half Subtractor

Subtract two binary numbers

X,Y: single bit inputs, D: single bit difference, B: barrow

X Y D B
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

D= X’Y+XY’=(X⊕Y)

B: X’Y

Full subtractor

Full subtractor include barrow: Bin

X Y Bin D Bout
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

 YB
X

00

01

11

10

 0 0 1 0 1

 1 1 0 1 0

 D = X’Y’ Bin+ X’YB’in+

 XY’ B’in+ XYBin

 = Bin(X’Y’+XY)+ B’in(X’Y+XY’)

 = Bin(X⊕Y)’+ B’in(X⊕Y)

 = Bin⊕X⊕Y

 YB
X

00

01

11

10

 0 0 1 1 1

 1 0 0 1 0

 Bout= X’ Bin+X’Y+YBin

Digital Design (Lecture -7-)

58

Negative Numbers –2’s Complement.
Subtracting a number is the same as:
1. Perform 2’s complement
2. Perform addition
°If we can augment adder with 2’s complement hardware?

4-bit Subtractor: E = 1

Adder-Subtractor Circuit

Note:-

S=0: Addition

S=1: Subtraction

Digital Design (Lecture -7-)

59

Digital Comparator

Q) Compare two numbers each number has 1 bit

A B A=B A>B A<B
0 0 1 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

A=B : A’B’+AB=(A⊕B)’=A⊙B

A>B: AB’

A<B: A’B

A A=B

B

 A>B

 A<B

Digital Design (Lecture -7-)

60

Q) Compare two numbers each number has 2 bits

A2 A1 B2 B1 A=B A>B A<B
0 0 0 0 1 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 0 1 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 0 1 1 0 0 1
1 1 0 0 0 1 0
1 1 0 1 0 1 0
1 1 1 0 0 1 0
1 1 1 1 1 0 0

A=A2A1 , B=B2B1

A=B: (A2=B2) and (A1=B1) =(A2⊙B2).(A1⊙B1)

A>B: (A2>B2) or ((A2=B2) and (A1>B1)) =(A2B’2) +((A2⊙B2).(A1B’1))

A<B: (A2<B2) or ((A2=B2) and (A1<B1)) =(A’2B2) +((A2⊙B2).(A’1B1))

A=B: A’2A’1 B’2 B’1+ A’2A1 B’2 B1+ A2A’1 B2 B’1+ A2A1 B2 B1

= A’2B’2(A’1B’1+ A1B1)+A2B2(A’1B’1+ A1B1)

= A’2B’2(A1⊙B1)+ A2B2(A1⊙B1)= (A1⊙B1)(A’2B’2+ A2B2)= (A1⊙B1) (A2⊙B2)

A<B: A’2A’1B’2B1+A’2A’1 B2B’1+A’2A’1B2B1+A’2A1B2B’1+A’2A1B2B1+A2A’1 B2B1

= A’2B2(A’1B’1+A’1B1+A1B’1+A1B1)+ A’2A’1B’2B1+A2A’1 B2B1

= A’2B2(A’1(B’1+B1)+A1(B’1+B1))+ A’1B1(A’2B’2+ A2B2)

= A’2B2(A’1(1)+A1(1))+ A’1B1(A2⊙B2)

= A’2B2(A’1 +A1) + A’1B1(A2⊙B2)

= A’2B2(1) + A’1B1(A2⊙B2) = (A’2B2) + ((A’1B1).(A2⊙B2))

Digital Design (Lecture -7-)

61

Physical Implementation

 B2B1

A2A1

00

01

11

10
 00 0 0 0 0

 01 1 0 0 0

 11 1 1 0 1

 10 1 1 0 0

 B2B1

A2A1

00

01

11

10
 00 0 1 1 1

 01 0 0 1 1

 11 0 0 0 0

 10 0 0 1 0

 B2B1

A2A1

00

01

11

10
 00 1 0 0 0

 01 0 1 0 0

 11 0 0 1 0

 10 0 0 0 1

A=B: A’2A’1 B’2 B’1+ A’2A1 B’2 B1+
A2A’1 B2 B’1+ A2A1 B2 B1

= A’2B’2(A’1B’1+
A1B1)+A2B2(A’1B’1+ A1B1)

= A’2B’2(A1⊙B1)+ A2B2(A1⊙B1)

= (A1⊙B1)(A’2B’2+ A2B2)

= (A1⊙B1) (A2⊙B2)

A>B: A2 B’2+ A1 B’2 B’1+ A2A1B’1

 = A2 B’2+ A1 B’1(B’2+ A2)

A<B: A’2 B2+ A’1 B2 B1+ A’2A’1B1

 = A’2 B2+ A’1B1(B2+ A’2)

Digital Design (Lecture -8-)

62

Encoder, Decoder, Multiplexer, and Demultiplexer

Encoders
If the decoder's output code has fewer bits than the input code, the device is usually
called an encoder.

 e.g. 2n-to-n
The simplest encoder is a 2n-to-n binary encoder
•One of 2n inputs = 1
•Output is an n-bit binary number

Digital Design (Lecture -8-)

63

Digital Design (Lecture -8-)

64

Binary Decoder
 Black box with n input lines and 2n output lines
 Only one output is a 1 for any given input

2-to-4 Binary Decoder

3-to-8 Binary Decoder

Digital Design (Lecture -8-)

65

Use two 3 to 8 decoders to make 4 to 16 decoder
 Enable can also be active high
 In this example, only one decoder can be active at a time.
 x, y, z effectively select output line for w

Digital Design (Lecture -8-)

66

Multiplexer

A multiplexer is a network that has many inputs and one output, and the value of
the output will be the value of one of inputs which will be decided by some select
lines. The simplest type of multiplexer is the two line to one line data multiplexer.
Let A be one of the inputs and B is the other input and Y is the output, and S is the
select line, then Y = A if Select = 0, Y = B if Select = 1.
 Select an input value with one or more select bits
 Use for transmitting data
 Allows for conditional transfer of data
 Sometimes called a mux

Digital Design (Lecture -8-)

67

Digital Design (Lecture -8-)

68

Digital Design (Lecture -8-)

69

Demultiplexer
A demultiplexer basically reverses the multiplexing function. It is take data

from one line and distribute them to given number of output lines. The following
figure shows a one to four line demultiplexer circuit. The input data line goes to all
of the AND gates. The two select lines enable only one gate at a time and the data
appearing on the input line will pass through the selected gate to the associated
output line.

The simplest type of demultiplexer is the one to two lines DMUX.

Digital Design (Lecture -8-)

70

Q) Design majority voting using 4*1 multiplexer

r=0

r=Z

r=Z

r=1

Q) Design 3-bit even Parity using 4*1 multiplexer

r=Z

r=Z’

r=Z’

r=Z

X Y Z r

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

X Y Z r

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 X y

 0

 Z r

 1

0 S0 s1

1 4*1

2 MUX

3

 X y

 Z

 r

0 S0 S1

1 4*1

2 MUX

3

Digital Design (Lecture -8-)

71

Q) Design the full adder using 3*8 decoder

X Y Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 S(x, y, Cin) = Σ(1,2,4,7)

Cout (x, y, Cin) = Σ(3,5,6,7)

Q) Design the full adder using 4*1 multiplexer

X Y Cin Cout

Cout=0
Cout= Cin

Cout= Cin

Cout= 1

S

S= Cin

S= C’in

S= C’in

S= Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 X Y X Y

0

Cin S

1

 Cin

Cout

0 S0 S1

1 4*1

2 MUX

3

0 S0 S1

1 4*1

2 MUX

3

Cin
Cout

Digital Design (Lecture -8-)

72

Q) Design the circuit using 4*1 multiplexer Z=f(A,B,C)=A’B’C’+A’B+ABC’+AC

Z=C’ when the Select Lines: A, B

Z=1 then the Function Table

Z=C

Z=1

 when the Select Lines: A, C

 then the Function Table

 When the Select Lines: A, C

 then the Function Table

A B C Z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

S0=A S1=B Z
0 0 C’
0 1 1
1 0 C
1 1 1

A B C Z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

S0=A S1=C Z
0 0 1
0 1 B
1 0 B
1 1 1

A B C Z

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

S0=B S1=C Z
0 0 A’
0 1 A
1 0 1
1 1 1

 A B

 C

 1 Z

0 S0 S1

1 4*1

2 MUX

3

1-1)

 A C

 1

 B Z

0 S0 S1

1 4*1

2 MUX

3

1-2)

 B C

 A

 Z

 1

0 S0 S1

1 4*1

2 MUX

3

1-3)

Digital Design (Lecture -8-)

73

2) C
AB

0

1

 00 1 0

 01 1 1

 11 1 1

 10 0 1

3)
Z=f(A,B,C)=A’B’C’+A’B+ABC’+AC

 =A’B’C’+A’B(C+C’)+ABC’+AC(B+B’)

 =A’B’C’+A’BC+A’BC’+ABC’+ABC+AB’C

 =A’B’(C’)+A’B(C+C’)+AB(C+C’)+AB’C

 =A’B’(C’)+A’B(1)+ AB’(C)+ AB(1)

4) Z=f(A,B,C)=A’B’C’+A’B+ABC’+AC= A’B’C’+A’BC+A’BC’+ABC’+ABC+AB’C

 Index(No. of 1) 0 2 1 2 3 2

 Value 0 3 2 6 7 5
 1 2 4 weight

 C B A

 2,3 0,2 2,6 (the difference between numbers

 6,7 5,7 3,7 have different index=weight)

All variable have the same no. of pairs then take any one like C

Value according to
index

A B C

0 0 0 0
2 0 1 0
3 0 1 1
5 1 0 1
6 1 1 0
7 1 1 1

Z=C’ C=0

Z=1 both 1

Z=1 both 1

Z=C C=1

4 2 0 1 data value
A B C’ C
0 0 0 1 C’
0 1 2 3 1
1 0 4 5 C
1 1 6 7 1

 can be drawn like this

 C’

 1 Z

 C

 1

 A B

A’B’

A’B 4*1

AB’ MUX

AB S0 S1

Digital Design (Lecture -8-)

74

Q) Design the circuit using 4*1 multiplexer Z=f(A,B,C)=A’B+B’C+BC+AB’C’

Z=C

Z=1

Z=1

Z=C

2) C
AB

0

1

 00 0 1

 10 1 1

 11 0 1

 10 1 1

3) Z=f(A,B,C)= A’B+B’C+BC+AB’C’

 =A’B(C+C’)+B’C(A+A’)+BC(A+A’)+AB’C’

 =A’BC+A’BC’+AB’C+A’B’C+ABC+A’BC+AB’C’

 =A’B’C+A’BC+A’BC’+AB’C+AB’C’+ABC=A’B’C+A’B(C+C’)+AB’(C+C’)+ABC

 =A’B’(C)+A’B(1)+ AB’(1)+ AB(C)

4) Z=f(A,B,C)= A’B+B’C+BC+AB’C’= A’BC+A’BC’+AB’C+A’B’C+ABC+AB’C’

 Index(No. of 1) 2 1 2 1 3 1

 Value 3 2 5 1 7 4
 1 2 4

 C B A

 2,3 1,3 1,5 (the difference between numbers

 4,5 3,7 have different index=weight)

A,C have the same no. of pairs then take any one like C

A B C Z

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Value according to
index

A B C

1 0 0 1
2 0 1 0
4 1 0 0
3 0 1 1
5 1 0 1
7 1 1 1

 A B

 C

 1 Z

0 S0 S1

1 4*1

2 MUX

3

Z=C C=1

Z=1 both 1

Z=C C=1

Z=1 both 1

1)

4 2 0 1 data value
A B C’ C
0 0 0 1 C
0 1 2 3 1
1 0 4 5 1
1 1 6 7 C

 Or can be drawn like this

 C

 1 Z

 A B

A’B’

A’B 4*1

AB’ MUX

AB S0 S1

Digital Design (Lecture -8-)

75

Q) Design the circuit using 8*1 multiplexer Z=f(A,B,C,D)=∑(1,3,4,7,12,13) with
don’t care (0,5,8,11)

Z=1;D

Z=D

Z=1;D'

Z=D

Z=0;D’

Z=0;D

Z=1 0

Z=0

2) Z=f(A,B,C,D)=∑(1,3,4,7,12,13) with don’t care (0,5,8,11)

 Index(No. of 1) 1 2 1 3 2 3 0 2 1 3
 1 2 4 8

 D C B A

 0,1 1,3 0,4 0,8 (the difference between numbers

 4,5 5,7 1,5 4,12 have different index=weight)

 12,13 8,12 3,11

 3,7 5,13

A,B have the same no. of pairs then take any one like A

A B C D Z

0 0 0 0 X
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 X
0 1 1 0 0
0 1 1 1 1
1 0 0 0 X
1 0 0 1 0
1 0 1 0 0
1 0 1 1 X
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Value
according
to index

A B C D

0 0 0 0 0
1 0 0 0 1
4 0 1 0 0
8 1 0 0 0
3 0 0 1 1
5 0 1 0 1

12 1 1 0 0
7 0 1 1 1

11 1 0 1 1
13 1 1 0 1

 A B C

 1

 D Z

0 S0 S1 S2

1 8*1

2 MUX

3

4

5

6

7

1)

4 2 1 0 8 data value
B C D A’ A
0 0 0 0 8 1
0 0 1 1 9 A’
0 1 0 2 10 0
0 1 1 3 11 1
1 0 0 4 12 1
1 0 1 5 13 1
1 1 0 6 14 0
1 1 1 7 15 A’

Digital Design (Lecture -8-)

76

Q) Design the circuit using 8*1 multiplexer

Z=f(A,B,C,D)=A’C’D’+BC’D’+AB’C’+A’BC’D+A’B’CD’

Z=D’

Z=D’

Z=1

Z=0

Z=1

Z=0

Z=D’

Z=0

Q) Design the circuit using 8*1 multiplexer

Z=f(K,L,M,N)=KL’N’+KLM’+LMN+K’L’MN with don’t care
(K’LM’N,KL’MN)

Z=0

Z=N

Z=0;N

Z=N

Z=N’

Z=1;N’

Z=1

Z=N

A B C D Z

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

K L M N Z

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 X
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 X
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

 A B C

D

 Z

1

0

0 S0 S1 S2

1 8*1

2 MUX

3

4

5

6

7

 K L M

 0

N Z

1

0 S0 S1 S2

1 8*1

2 MUX

3

4

5

6

7

Digital Design (Lecture -8-)

77

Homework

Q1) Design the circuit using 8*1 multiplexer

Z=f(A,B,C,D)=∑(0,1,2,3,5,7,8,10,12,13,15)

Q2) Design the circuit using 8*1 multiplexer Z=f(A,B,C)=∑(2,3,5,6,7)

Q3) Design the circuit using 4*1 multiplexer Z=f(A,B,C)=∑(2,3,5,6,7)

Q4) Design the comparator to compare 2 numbers each has 2 bits using 4*16 decoder

Q5) Design the comparator to compare 2 numbers each has 2 bits using 8*1
multiplexer

Q6) Design the circuit using 4*1 multiplexer Z=f(A,B,C)=A’B+BC+A’C

Digital Design (Lecture -9-)

78

Sequential Circuits
Sequential Circuits: Consist of a combinational circuit to which memory

elements are connected to form a feedback path. The memory elements (Flip-

Flops) are devices capable of storing binary information within them. This binary

information at any given time defines the state of the sequential circuit.

 Outputs depend on inputs and previous values of outputs

 Outputs depend on previous state of the circuit

 State is stored in memory elements (registers, latches, flip flops)

Cross-Coupled Invertor

A stable value can be stored at inverter outputs

Digital Design (Lecture -9-)

79

Flip-Flop

1-S-R Flip-Flop

S-R latch made from cross-coupled NORs

Logic circuit diagram of Simple S-R

Logic circuit diagram of Clock S-R

 Occasionally, desirable to avoid latch changes
 C = 0 disables all latch state changes
 Control signal enables data change when C = 1

 Graphic Symbol

NOR S-R Latch with Control Input
Latch is level-sensitive, in regards to C
Only stores data if C’= 0

S Q

R Q’
QQ

Clk

C

Digital Design (Lecture -9-)

80

 Q(t+1) =S+R’Qt

 S.R=0

2-J-K Flip-Flop

Logic circuit diagram of Clock J-K Graphic Symbol

 𝑸𝒕+𝟏 = 𝑱𝑸𝒕 + 𝑲𝑸𝒕

 Two data inputs, J and K
 J -> set, K -> reset, if J=K=1 then toggle output

Inputs Output
Q(t+1) S R Qt

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

Qt Q(t+1) S R
0 0 0 x
0 1 1 0
1 0 0 1
1 1 x 0

Inputs Output
Q(t+1) J K Qt

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Qt Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 x 0

J K Q(t+1)

0 0 Qt No change
0 1 0 Reset
1 0 1 Set
1 1 Q’t Toggle

S R Q(t+1)

0 0 Qt No change
0 1 0 Reset
1 0 1 Set
1 1 Unpredictable

 Characteristic table

 Characteristic table

J

K

 Truth table

 Excitation table

 Truth table
 Excitation table

Digital Design (Lecture -9-)

81

3-D Flip-Flop

 Q0 indicates the previous state (the previously stored value)
 Stores a value on the positive edge of C (D gets latched to Q on the rising

edge of the clock, Input changes at other times have no effect on output)

Positive and Negative Edge D Flip-Flop

 D flops can be triggered on positive or negative edge
 Bubble before Clock (C) input indicates negative edge trigger

Inputs Output
Q(t+1) D Qt

0 0 0
0 1 0
1 0 1
1 1 1

 𝑸𝒕+𝟏 = 𝑫

 Input value D is passed to output Q when C is high
 Input value D is ignored when C is low

Qt Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

D Qt

0 0 Reset
1 1 Set

 Characteristic table

C

 Truth table
 Excitation table

Digital Design (Lecture -9-)

82

Master-Slave D Flip Flop

 Consider two latches combined together
 Only one C value active at a time
 Output changes on falling edge of the clock

Symbols for Latches

 SR latch is based on NOR gates
 S’R’ latch based on NAND gates
 D latch can be based on either.
 D latch sometimes called transparent latch

Digital Design (Lecture -9-)

83

4-T Flip-Flop

 Graphic Symbol

Inputs Output
Q(t+1) T Qt

0 0 0
0 1 1
1 0 1
1 1 0

𝑸𝒕+𝟏 = 𝑻𝑸𝒕 + 𝑻𝑸𝒕 = 𝑻 ⊕ 𝑸𝒕

Convert from one Flip-Flop (F.F) to another

1- S-R F.F → D F.F

S=D

Qt Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

T Q(t+1)

0 Qt No change
1 Q’t Toggle

D Qt Q(t+1) S R
0 0 0 0 x
0 1 0 0 1
1 0 1 1 0
1 1 1 x 0

 Q
D

0

1

 0 0 0

 1 1 X

 Characteristic table

T

 Q
D

0

1

 0 X 1

 1 0 0

 R=D’

S Q

R Q’
QQ

D

 Clk

 D R

 C

 S

D S

 R

 Excitation table

 Truth table

Use Truth table of D
&

 Excitation table of S-R

Digital Design (Lecture -9-)

84

2- J-K F.F → D F.F

J=D

3- T F.F → D F.F

T=DQ’+D’Q=D⊕Q

D Qt Q(t+1) J K
0 0 0 0 x
0 1 0 X 1
1 0 1 1 X
1 1 1 x 0

 Q
D

0

1

 0 0 X

 1 1 X

D Qt Q(t+1) T
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

 Q
D

0

1

 0 0 1

 1 1 0

 Q
D

0

1

 0 X 1

 1 X 0

 K=D’

J Q

K Q’
QQ

D

 Clk

D J

 K

 T Q

 Q’

 Clk

D

Use Truth table of D
&

 Excitation table of J-K

Use Truth table of D
&

 Excitation table of T

Digital Design (Lecture -9-)

85

4) S-R F.F → T F.F

𝑆 = 𝑇. 𝑄

5) J-K F.F→ T F.F

J=T

T Qt Q(t+1) S R
0 0 0 0 x
0 1 1 X 0
1 0 1 1 0
1 1 0 0 1

 Q
T

0

1

 0 0 X

 1 1 0

T Qt Q(t+1) J K

0 0 0 0 x
0 1 1 X 0
1 0 1 1 X
1 1 0 x 1

 Q
T

0

1

 0 0 X

 1 1 X

 T R

 C

 S

T S

R

 Q
T

0

1

 0 X 0

 1 0 1

 R=T.Q

S Q

R Q’
QQ

T

 Clk

 Q
T

0

1

 0 X 0

 1 X 1

 K=T

J Q

K Q’
QQ

T

 Clk

T J

 K

Use Truth table of T
&

 Excitation table of S-R

Use Truth table of T
&

 Excitation table of J-K

Digital Design (Lecture -9-)

86

6- J-K F.F → S-R F.F

J=S

K=R

Homework

1) Convert D F.F → T F.F
2) Convert D F.F → S-R F.F
3) Convert T F.F → J-K F.F
4) Convert D F.F → J-K F.F
5) Convert S-R F.F → J-K F.F
6) Convert T F.F → S-R F.F

S R Qt Q(t+1) J K
0 0 0 0 0 x
0 0 1 1 X 0
0 1 0 0 0 X
0 1 1 0 x 1
1 0 0 1 1 X
1 0 1 1 X 0
1 1 0 X X X
1 1 1 X X X

 RQ
S

00

01

11

10

 0 0 X X 0

 1 1 X X X

 RQ
S

00

01

11

10

 0 X 0 1 X

 1 X 0 X X

J Q

K Q’
QQ

 S

 Clk

 R

Use Truth table of S-R
&

 Excitation table of J-K

Digital Design (Lecture -10-)

87

Counter

°Counters are important components in computers

•The increment or decrement by one in response to input

°Two main types of counters

•Ripple (asynchronous) counters

•Synchronous counters

°Ripple counters

•Flip flop output serves as a source for triggering other flip flops

°Synchronous counters

•All flip flops triggered by a clock signal

°Synchronous counters are more widely used in industry.

°Counter: A register that goes through a prescribed series of states

°Binary counter

•Counter that follows a binary sequence

•N bit binary counter counts in binary from 0 to 2n-1

°Ripple counters triggered by initial Count Signal

°Applications:

•Watches

•Clocks

•Alarms

•Web browser refresh

Digital Design (Lecture -10-)

88

Counter: A sequential circuit that goes through a prescribed sequence of states

upon the application of input pulses. Which used for counting the number of

occurrences of an event and are useful for generating timing sequences to

control operations in a digital system.

Asynchronous binary counter

A three-stage asynchronous binary counter is shown in the following figure. It has

eight states due to its three states.

A timing diagram appears in the following figure for eight clock pulse.

Digital Design (Lecture -10-)

89

Notes:-

 Reset signal sets all outputs to 0

 Count signal toggles output of low-order flip flop

 Low-order flip flop provides trigger for adjacent flip flop

 Not all flops change value simultaneously

•Lower-order flops change first

 Each FF output drives the CLK input of the next FF.

 FFs do not change states in exact synchronism with the applied clock pulses.

 There is delay between the responses of successive FFs.

 Ripple counter due to the way the FFs respond one after another in a kind of

rippling effect.

Synchronous binary counter

The synchronous counter is also called a parallel counter because the clock line

is connected in parallel to each Flip-Flop. Notice that an arrangement different

from that for the asynchronous counter. The following figure shows a four-stage

binary counter and its equivalent logic symbol.

Digital Design (Lecture -10-)

90

Q) Design 4 bit counter using J-K F.F

 Excitation table of J-K F.F

Present State Qt Next State Qt+1 JD KD JC KC JB KB JA KA
D C B A D C B A
0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X
0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1
0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X
0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1
0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X
0 1 0 1 0 1 1 0 0 X X 0 1 X X 1
0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X
0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1
1 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X
1 0 0 1 1 0 1 0 X 0 0 X 1 X X 1
1 0 1 0 1 0 1 1 X 0 0 X X 0 1 X
1 0 1 1 1 1 0 0 X 0 1 X X 1 X 1
1 1 0 0 1 1 0 1 X 0 X 0 0 X 1 X
1 1 0 1 1 1 1 0 X 0 X 0 1 X X 1
1 1 1 0 1 1 1 1 X 0 X 0 X 0 1 X
1 1 1 1 0 0 0 0 X 1 X 1 X 1 X 1

Qt Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 x 0

 BA
DC

00

01

11

10

 00 0 0 0 0

 01 0 0 1 0

 11 X X X X

 10 X X X X

 BA
DC

00

01

11

10

 00 0 0 1 0

 01 X X X X

 11 X X X X

 10 0 0 1 0

 BA
DC

00

01

11

10

 00 X X X X

 01 X X X X

 11 0 0 1 0

 10 0 0 0 0

 JD=QC.QB.QA kD=QC.QB.QA JC=QB.QA kC=QB.QA

 BA
DC

00

01

11

10

 00 X X X X

 01 0 0 1 0

 11 0 0 1 0

 10 X X X X

Digital Design (Lecture -10-)

91

 Four-stage synchronous binary counter

Notes:-
 Synchronous (parallel) counters

•All of the FFs are triggered simultaneously by the clock input pulses.
•All FFs change at same time

 Remember
•If J=K=0, flop maintains value
•If J=K=1, flop toggles

 Most counters are synchronous in computer systems.

 BA
DC

00

01

11

10

 00 1 X X 1

 01 1 X X 1

 11 1 X X 1

 10 1 X X 1

 JA=1

 BA
DC

00

01

11

10

 00 X 1 X 0

 01 X X 1 0

 11 X X 1 0

 10 X X 1 0

 KB=QA

 BA
DC

00

01

11

10

 00 0 X 1 X

 01 0 1 X X

 11 0 1 X X

 10 0 1 X X

 JB=QA

 BA
DC

00

01

11

10

 X 1 1 X

 X 1 1 X

 X 1 1 X

 X 1 1 X

 KA=1

Digital Design (Lecture -10-)

92

Decade Counter
Decade counters are very important category of digital counter because of their

wide application, a decade counter has ten states in its sequence that is, it has

modulus of ten. It consist of four stages and can have any given sequence of states

as long as there are ten. A very common type of decade counter is the BCD (8421)

counter, which exhibits a binary-coded-decimal sequence as shown in Table (2).

As you can see, the BCD decade counter goes through a straight binary

sequence through the binary 9 state, rather than going to the binary 10 state, it

recycles to the 0 state. A synchronous BCD decade counter is shown in Fig. (6).

Q) Design BCD decade counter using J-K F.F

 Excitation table of J-K F.F

Present State Qt Next State Qt+1 JD KD JC KC JB KB JA KA

D C B A D C B A
0 0 0 0 0 0 0 1 0 X 0 X 0 X 1 X
0 0 0 1 0 0 1 0 0 X 0 X 1 X X 1
0 0 1 0 0 0 1 1 0 X 0 X X 0 1 X
0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1
0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X
0 1 0 1 0 1 1 0 0 X X 0 1 X X 1
0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X
0 1 1 1 1 0 0 0 1 X X 1 X 1 X 1
1 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X
1 0 0 1 0 0 0 0 X 1 0 X 0 X X 1

Qt Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Digital Design (Lecture -10-)

93

 JC= QB.QA

 BA
DC

00

01

11

10

 00 0 0 1 0

 01 X X X X

 11 X X X X

 10 0 0 X X

 BA
DC

00

01

11

10

 00 1 X X 1

 01 1 X X 1

 11 X X X X

 10 1 X X X

 JA=1

 BA
DC

00

01

11

10

 00 X X X X

 01 X X X X

 11 X X X X

 10 0 1 X X

 kD= QD.QA

 BA
DC

00

01

11

10

 00 0 0 0 0

 01 0 0 1 0

 11 X X X X

 10 X X X X

 JD=QC.QB.QA

 BA
DC

00

01

11

10

 00 X X X X

 01 0 0 1 0

 11 X X X X

 10 X X X X

 kC=QB.QA

 BA
DC

00

01

11

10

 00 X X 1 0

 01 X X 1 0

 11 X X X X

 10 X X X X

 KB= Q’D .QA

 BA
DC

00

01

11

10

 00 0 1 X X

 01 0 1 X X

 11 X X X X

 10 0 0 X X

 JB= Q’D .QA

 BA
DC

00

01

11

10

 X 1 1 X

 X 1 1 X

 X X X X

 X 1 X X

 KA=1

Digital Design (Lecture -10-)

94

Q) Design 3 bit counter using J-K F.F

 Excitation table of J-K F.F

3 bit synchronous binary counter

Present State Qt Next State Qt+1 JC KC JB KB JA KA
C B A C B A
0 0 0 0 0 1 0 X 0 X 1 X
0 0 1 0 1 0 0 X 1 X X 1
0 1 0 0 1 1 0 X X 0 1 X
0 1 1 1 0 0 1 X X 1 X 1
1 0 0 1 0 1 X 0 0 X 1 X
1 0 1 1 1 0 X 0 1 X X 1
1 1 0 1 1 1 X 0 X 0 1 X
1 1 1 0 0 0 X 1 X 1 X 1

Qt Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 x 0

 BA
C

00

01

11

10

 0 0 0 1 0

 1 x x x x

 JC= QB QA

 BA
C

00

01

11

10

 0 x x x x

 1 0 0 1 0

 KC= QB QA

 BA
C

00

01

11

10

 0 0 1 x x

 1 0 1 x x

 JB= QA

 BA
C

00

01

11

10

 0 x x 1 0

 1 x x 1 0

 KB=QA

 BA
C

00

01

11

10

 0 1 x x 1

 1 1 x x 1

 JA=1

 BA
C

00

01

11

10

 0 X 1 1 x

 1 x 1 1 x

 KA=1

Digital Design (Lecture -10-)

95

Q) Design 3 bit counter using S-R F.F

 Excitation table of S-R F.F

Present State Qt Next State Qt+1 SC RC SB RB SA RA
C B A C B A
0 0 0 0 0 1 0 X 0 X 1 0
0 0 1 0 1 0 0 X 1 0 0 1
0 1 0 0 1 1 0 X X 0 1 0
0 1 1 1 0 0 1 0 0 1 0 1
1 0 0 1 0 1 X 0 0 X 1 0
1 0 1 1 1 0 X 0 1 0 0 1
1 1 0 1 1 1 X 0 X 0 1 0
1 1 1 0 0 0 0 1 0 1 0 1

Qt Q(t+1) S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 x 0

 BA
C

00

01

11

10

 0 0 1 0 x

 1 0 1 0 x

 BA
C

00

01

11

10

 0 x 0 1 0

 1 x 0 1 0

 BA
C

00

01

11

10

 0 1 0 0 1

 1 1 0 0 1

 BA
C

00

01

11

10

 0 0 0 1 0

 1 x x 0 x

 SC= Q’C QB QA

 BA
C

00

01

11

10

 0 x x 0 x

 1 0 0 1 0

 RC= QC QB QA

 SB= Q’B QA RB= QB QA SA= Q’A

 BA
C

00

01

11

10

 0 0 1 1 0

 1 0 1 1 0

 RA= QA

Digital Design (Lecture -10-)

96

Q) Design 3 bit counter using T F.F

Excitation table of T F.F

Q) Design 3 bit counter using D F.F

Excitation table of DF.F

Present State Qt Next State Qt+1 TC TB TA

C B A C B A
0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1 1
1 0 0 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1

Qt Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

 BA
C

00

01

11

10

 0 0 0 1 0

 1 0 0 1 0

 BA
C

00

01

11

10

 0 0 1 1 0

 1 0 1 1 0

 BA
C

00

01

11

10

 0 1 1 1 1

 1 1 1 1 1

Present State Qt Next State Qt+1 DC DB DA

C B A C B A
0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 0
0 1 0 0 1 1 0 1 1
0 1 1 1 0 0 1 0 0
1 0 0 1 0 1 1 0 1
1 0 1 1 1 0 1 1 0
1 1 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0

Qt Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

 BA
C

00

01

11

10

 0 0 0 1 0

 1 1 1 0 1

 BA
C

00

01

11

10

 0 0 1 0 1

 1 0 1 0 1

 BA
C

00

01

11

10

 0 1 0 0 1

 1 1 0 0 1

 TC = QB QA TB= QA TA= 1

 DC = Q’CQBQA+ QCQ’B+ QCQ’A DB=Q’BQA+QBQ’A=QB⊕QA DA= Q’A

Digital Design (Lecture -10-)

97

Q) Design 3 bit odd counter (1→3→5→7→1) using J-K F.F

 Excitation table of J-K F.F

Q) Design 3 bit even counter (0→2→4→6→0) using T F.F
Excitation table of T F.F

Present State Qt Next State Qt+1 JC KC JB KB JA KA
C B A C B A
0 0 1 0 1 1 0 X 1 X x 0
0 1 1 1 0 1 1 X x 1 x 0
1 0 1 1 1 1 X 0 1 X x 0
1 1 1 0 0 1 X 1 x 1 x 0

Qt Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 x 0

 BA
C

00

01

11

10

 0 x 1 x x

 1 x 1 x x

 BA
C

00

01

11

10

 0 x x 1 x

 1 x x 1 x

Present State Qt Next State Qt+1 TC TB TA

C B A C B A
0 0 0 0 1 0 0 1 0
0 1 0 1 0 0 1 1 0
1 0 0 1 1 0 0 1 0
1 1 0 0 0 0 1 1 0

Qt Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

 BA
C

00

01

11

10

 0 0 x x 1

 1 0 x x 1

 BA
C

00

01

11

10

 0 1 x x 1

 1 1 x x 1

 BA
C

00

01

11

10

 0 0 x x 0

 1 0 x x 0

 BA
C

00

01

11

10

 0 x 0 1 x

 1 x x x x

 JC= QB

 BA
C

00

01

11

10

 0 x x x x

 1 x 0 1 x

 KC= QB

 JB= 1
 KB=1

 BA
C

00

01

11

10

 0 x x x x

 1 x x x x

 JA=1

 BA
C

00

01

11

10

 0 x 0 0 x

 1 x 0 0 x

 KA=0

 TB= 1
 TA= 0

 TC= QB

Digital Design (Lecture -10-)

98

Q) Design 3 bit down counter using J-K F.F

 Excitation table of J-K F.F

Present State Qt Next State Qt+1 JC KC JB KB JA KA
C B A C B A
1 1 1 1 1 0 X 0 X 0 X 1
1 1 0 1 0 1 X 0 X 1 1 X
1 0 1 1 0 0 X 0 0 X X 1
1 0 0 0 1 1 X 1 1 X 1 X
0 1 1 0 1 0 0 X X 0 X 1
0 1 0 0 0 1 0 X X 1 1 X
0 0 1 0 0 0 0 X 0 X X 1
0 0 0 1 1 1 1 X 1 X 1 X

Qt Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 x 0

 BA
C

00

01

11

10

 0 1 0 x x

 1 1 0 x x
 BA
C

00

01

11

10

 0 x x 0 1

 1 x x 0 1

 BA
C

00

01

11

10

 0 1 x x 1

 1 1 x x 1 BA
C

00

01

11

10

 0 X 1 1 x

 1 x 1 1 x

 BA
C

00

01

11

10

 0 1 0 0 0

 1 x x x x

 JC= Q’B Q’A

 BA
C

00

01

11

10

 0 x x x x

 1 1 0 0 0

 KC= Q’B Q’A

 JB= Q’A

 KB=Q’A

 JA=1

 KA=1

Digital Design (Lecture -10-)

99

Q) Design 3 bit up-down counter using T F.F

When x=0 up counter: (000→111), when x=1 down counter: (111→000)

Excitation table of T F.F

Present State Qt Up when x=0
Next State Qt+1

Down when x=1
Next State Qt+1

Up x=0 Down x=1
TC TB TA TC TB TA

C B A C B A C B A
0 0 0 0 0 1 1 1 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0 0 0 1 1 0 0 1
0 1 0 0 1 1 0 0 1 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 1 0 0 1
1 0 0 1 0 1 0 1 1 0 0 1 1 1 1
1 0 1 1 1 0 1 0 0 0 1 1 0 0 1
1 1 0 1 1 1 1 0 1 0 0 1 0 1 1
1 1 1 0 0 0 1 1 0 1 1 1 0 0 1

Qt Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

 AX
CB

00

01

11

10

 00 1 1 1 1

 01 1 1 1 1

 11 1 1 1 1

 10 1 1 1 1

 TA= 1

 AX
CB

00

01

11

10

 00 0 1 0 1

 01 0 1 0 1

 11 0 1 0 1

 10 0 1 0 1

 TB=QA X’ + Q’A X

 = QA ⊕ X

 AX
CB

00

01

11

10

 00 0 1 0 0

 01 0 0 0 1

 11 0 0 0 1

 10 0 1 0 0

 TC= QB QAX’+ QB Q’AX

 = QB(QAX’+ QB Q’AX)

 = QB(QA⊕ X)

Digital Design (Lecture -10-)

100

Homework

Q1) Design 3 bit odd counter using T F.F

Q2) Design 3 bit even counter using J-K F.F

Q3) Design 3 bit down counter using T F.F

Q4) Design 3 bit down odd counter using J-K F.F

Q5) Design 3 bit down odd counter using T F.F

Q6) Design 3 bit down even counter using J-K F.F

Q7) Design 3 bit down even counter using T F.F

Q8) Design 3 bit gray code (000→001→011→010→110→111→101→100→000)

counter using J-K F.F, then using T F.F)

Digital Design (Lecture -11-)

101

Shift Register

Register: Is a group of binary cells suitable for holding binary information.

Any binary machine is said to have a particular "Word Length". These terms defines

the number of bits required to represent data,

In other words, a machine which said to have a four-bit word length has its flip flops

arranged in groups of four. The group of flip flops are consider as a single unit called

a "Register".

The binary number is "Shifted" one bit at time from one flip flop to the next. The

device used in this type of transfer operation it called a "Shift Register"

A shift register is a series of interconnected flip flops used for temporary storage of

data as shown in Fig. (1). The output of one flip flop becomes the input of another,

all the flip flops in the shift register have a common clock signal connection and all

can be set or reset at the same time. Because the data were loaded to the circuit one

bit after another and the shift register shifted them from one flip flop to another, this

sequence is referred to as serial data loading and the circuit is called a "4-BIT

SERIAL IN-SERIAL OUT SHIFT REGISTER" as shown in the following figure.

Digital Design (Lecture -11-)

102

Clock D1 D2 D3 D4 Q1 Q2 Q3 Q4

1 1 0 0 0 1 0 0 0

2 1 1 0 0 1 1 0 0

3 1 1 1 0 1 1 1 0

4 1 1 1 1 1 1 1 1

This type of shift register accepts digital data serially that is one bit at the time on

one line. It produces the stored information on its output also in serial form.

The alternative to serial loading of the shift register is parallel loading, for a register

with parallel data input, the bits are entered simultaneously into their respective

stages on parallel-lines, rather than on a bit-by-bit basis on one line as with serial

data inputs. The following figure Shows a "4 BIT PARALLEL IN-PARALLEL

OUT REGISTER". In the parallel output register the output of each stage is

available, once the data are stored, each bit appears on its respective output line and

all bits are available simultaneously, rather than on a bit-by-bit basis as with the

serial output.

Digital Design (Lecture -11-)

103

Clock D1 D2 D3 D4 Q1 Q2 Q3 Q4

1 1 0 1 1 1 0 1 1

2 0 1 0 1 0 1 0 1

3 1 1 1 0 1 1 1 0

If the data are loaded serially and read out in parallel, the shift register is

functioning as a "SERIAL-TO-PARALLEL CONVERTER". If the data is

loaded in parallel and shifted out serially, the shift register is functioning as a

"PARALLEL-TO-SERIAL CONVERTER". Some shift registers are configured

to allow shifting the data in both the right and left direction. These shift registers

are usually called "Universal Shift Register", because they can shift data in either

right or left direction, can load data either serially or in parallel and can output

data either serially or in parallel.

Notes:-

• A register is a digital electronic device capable of storing several bits of data:

- Normally made from D-type flip-flops.

- Multiple flip flops can be combined to form a data register Shift registers

allow data to be transported one bit at a time.

-Registers also allow for parallel transfer, many bits transferred at the same

time.

• Operation

– Data input is stored in the flip-flop on the +/- ve edge of the clock.

– The data can be read from the Q outputs

– New data can be reloaded by re-CLOCKing the register

