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Chapter one

Vector Analysis

1.1 Introduction

Vector analysis is a mathematical subject which is much better taught by
mathematicians than by engineers. Most junior and senior engineering students, however,
have not had the time to take a course in vector analysis, although it is likely that many
elementary vector concepts and operations were introduced in the calculus sequence.

1.2 vector notation
In order to distinguish vectors (quantities having magnitude and direction) from scalars
(quantities having magnitude only) the vectors are denoted by boldface symbols. A unir vector, one
of absolute value (or magnitude or length) 1, will in this book always be indicated by a boldface,
lowercase 2. The unit vector in the direction of a vector A is determined by dividing A by its
absolute value:

_A A
1A] A
By use of the unit vectors a,, a,, a, along the x, y, and z axes of a cartesian coordinate system,
an arbitrary vector can be written in component form:

A=A +Aa8 +A..,

L]

In terms of components, the absolute value of a vector is defined by
Al=A=VAT+ Al + A’



1.3 Vector Algebra
1. Vectors may be added and subtracted.

AtB=(Ae,+Aa +A,0,)t(Ba +Ba +Ba,)
=(A. 2 B)a, +(A, £B,)a, + (A.@B.)a,
2. The associative, distributive, and commutative laws apply.
A+(B+C)=(A+B)+C
k(A+B)=kA+kB (ki1 +k)A =Kk, A +kA
A+B=B+A
3. The dot product of two vectors is, by definition,
A~B=ABcos @ (read “A dot B”)
where 0 is the smaller angle between A and B. In Example 1 it is shown that
A-B=AB.+AB, +A,B,
which gives, in particular, |A|=VA-A.

1.4 Coordinate system

A problem which has cylindrical or spherical symmetry could be expressed and solved in the
familiar cartesian coordinate system. However, the solution would fail to show the symmetry and
in most cases would be needlessly complex. Therefore, throughout this book, in addition to the
cartesian coordinate system, the circular cylindrical and the spherical coordinate systems will be

used. All three will be examined together in order to illustrate the similarities and the differences.
A point P is described by three coordinates, in cartesian (x, y, z), in circular cylindrical (r, ¢, ),
and in spherical (r, 6, ¢), as shown in Fig. 1-2. The order of specifying the coordinates is
important and should be carefully followed. The angle ¢ is the same angle in both the cylindrical
and spherical systems. But, in the order of the coordinates, ¢ appears in the second position in
cylindrical, (r, ¢, z), and the third position in spherical, (r, 8, ¢). The same symbol, r, is used in
both cylindrical and spherical for two quite different things. In cylindrical coordinates r measures
the distance from the z axis in a plane normal to the z axis, while in the spherical system r measures
the distance from the origin to the point. It should be clear from the context of the problem which
r is intended.

(a) Cartesian (b) Cylindrical (c) Spherical
Fig. 12



The component forms of a vector in the three systems are
A=A +Aa +Aa, (cartesian)
A=As +Am,+A8, (cylindrical)
A=A +Agay+A,e, (spherical)

1.5 Differential Volume, Surface, And Line elements

There are relatively few problems in electromagnetics that can be solved without some sort of
integration—along a curve, over a surface, or throughout a volume. Hence the corresponding
differential elements must be clearly understood.

When the coordinates of point P are expanded to (x +dx,y +dy, z +dz) or (r+dr, ¢+
d¢, z +dz) or (r+dr, 6 +d6, ¢ +d¢), a differential volume dv is formed. To the first order in

infinitesimal quantities the differential volume is, in all three coordinate systems, a rectangular
box.

b
m
| -
I l’
.

dv = dx dy dz dv = rdrdpdz dv = r? sin6 drd@ d¢
(a) Cartesian (») Cylindrical (c) Spherical
Fig. 1.3

FromThe Fig 1.3

may also be read the areas of the surface elements that bound the differential

volume. For instance, in spherical coordinates, the differential surface element perpendicular to a,
is

dS = (rd6)(r sin 6d¢) =r*sin 6d6d¢
The differential line element, d¢ is the diagonal through P. Thus
de* = dx* + dy* + d2* (cartesian)
dé?=dr* +r* d¢’ + dz* (cylindrical)
de*=dr* +r* d6* + r*sin” 8 d¢” (spherical)



EXAMPLE 1. The dot product obeys the distributive and scalar multiplication laws
A+(B+C)=A-B+A-C A-kB=k(A-B)
This being the case,
A-B=(Aa +Aa +Aa,)(Ba,+Ba +Ba,)
AR TABG ) A0
+AB,(n.~a)+ - +AB,(a,-a)

However, a,*a,=a,*'8,=8,*8,=1 because the cos 6 in the dot product is unity when the angle is
zero. And when 6=9%0°, cos @ is zero; hence all other dot products of the unit vectors are zero. Thus

A-B=AB, +AB,+AB,

Chapter two
Coulomb Forces and Electric Field
Intensity
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2.1 Coulomb‘s Law

There is a force between two charges which is directly proportional to the charge magnitudes
and inversely proportional to the square of the separation distance. This is Coulomb’s law, which
was developed from work with small charged bodies and a delicate torsion balance. In vector form,

it is stated thus,

o010

dmed®

For media other than free space, € =e€€,, where ¢, is the relative permittivity or dielectric
constant. Free space is to be assumed in all problems and examples, as well as the approximate

value for €, , unless there is a statement to the contrary.
For point charges of like sign the Coulomb force is one of repulsion, while for unlike charges the

force is attractive. To incorporate this information rewrite Coulomb’s law as follows:

Fo Q0 _ 00

1~ 21 T 21
47eoR3, 4me R3,




EXAMPLE 1. Find the force on charge Q, , 20 uC, due to charge Q,, —300 uC, where Q, is at (0, 1,2) m and

0, at (2,0,0)m.
Because 1C is a rather large unit, charges are often given in microcoulombs (uC), nanocoulombs (nC), or
picocoulombs (pC). (Sce Appendix for the SI prefix system.) Referring to Fig. 2-1,

R,=-2a +a,+2a Ru=V(=2f+ P+ 2=3

2,
2,0,00

Fig. 21

1
and u=3(-2a, +a,+2,)

Then F,= (20 x 1074)(—300 x 107%) (—2:, +a,+ 2:,)

4x(10~°/36x)(3) 3
- "(h. 3 2.') N

2.2 Electric field intensity
For Q at the origin of a spherical coordinate system ~the electric field intensity

at an arbitrary point P

__Q
" 4me,r? *
E z E
P(r, 6, ¢) Plxz, y2, 23)

R=(x; =x))a, +(», —» Ja, +(z2 —zy)a,

Qx1, Yo 21)
(a) Spherical (b) Cartesian

Fig.2.2

2.3 Charge Distributions

Volume Charge

When charge is distributed throughout a specified volume, each charge element contributes to
the electric field at an external point. A summation or integration is then required to obtain the
total electric field. Even though electric charge in its smallest division is found to be an electron or
proton, it is useful to consider continuous (in fact, differentiable) charge distributions and to define a

charge density by

Y 3
p=25  (C/m)



With reference to volume v in Fig. 2-3, each differential charge dQ produces a differential
electric field

_do |
4me,R? "

dE

at the observation point P. Assuming that the only charge in the region is contained within the
volume, the total electric field at P is obtained by integration over the volume:

Pag
E= d
L dme R?

Sheet Charge
Charge may also be distributed over a surface or a sheet. Then each differential charge dQ on
the sheet results in a differential electric field

=49
" 4ne, R? O

at point P (see Fig. 2-4). If the surface charge density is p, (C/m?) and if no other charge is present
in the region, then the total electric field at P is

= Ps8r
s 4n fuR =

ds

Line Charge
If charge is distributed over a (curved) line, each differential charge dQ along the line produces a
differential electric field

__dg

N 4Jr€uR2 S



at P(See fig 2.4) And if the line charge density is p, (C/m), and no other charge is in the region,
then the total electric field at P is

Pelr
E= d¢
L 4me,R?

Fig 2.4

2.4 Standard Charge Configurations
Point Charge
As previously determined, the field of a single point charge Q is given by

__Q
E= Amegr? g

(spherical coordinates)

Infinite Line Charge
If charge is distributed with uniform density p, (C/m) along an infinite, straight line—which will
be chosen as the z axis—then the field is given by

__Pe . .
E= Inewr a, (cylindrical coordinates)
Example. 2.1
A uniform line charge, infinite in extent, with p, =20 nC/m, lies along the z axis. Find E at
(6,8,3)m.
In cylindrical coordinates r=V6®+8°=10m. The field is constant with z. Thus

__ 20x 10°°
2x(10-°/367)(10)

=364, V/m

Infinite Plane Charge
If charge is distributed with uniform density p, (C/m®) over an infinite plane, then the field is
given by

E=
2¢, s



CHAPTER 3

Electric Flux and Gauss Law
Reference: Engineering electromagnetic field :by hayt

3.1 Net Charge in a Region

From

dQ =pdv (C)

Q=J;pdv ©)

In general, p will not be constant throughout the volume v.

3.2 Electric Flux and Flux Density

Electric flux ¥, a scalar field, and its density D, a vector field, are useful quantities in solving
certain problems, as will be seen in this and subsequent chapters. Unlike E, these fields are not
directly measurable; their existence was inferred from nineteenth-century experiments in
electrostatics.

By definition, electrix flux W originates on positive charge and terminates on negative
charge. In the absence of negative charge, the flux W terminates at infinity. Also by definition,
one coulomb of electric charge gives rise to one coulomb of electric flux. Hence

¥=0 (O

If in the neighborhood of point P the lines of flux have the direction of the unit vector a (Se
e fig 3.1)

and if an amount of flux dW crosses the differential area dS, which is a normal to a, then the
electric flux density at P is

-4 2
—dsa (C/m*)




density D may vary in magnitude and direction from point to point of S; in general, D will not be
along the normal to 8. If, at the surface element dS, D makes an angle 8 with the normal, then the
differential flux crossing dS is given by

d¥=DdS cos =D -dSa,=D-dS

3.3 Gauss® Law

Gauss’ law states that The total flux out of a closed surface is equal to the net charge within the
surface. 'This can be written in integral form as

$D- a5~ 0w

3.4 Relation between Flux Density and Electric Field Intensity

Consider a point charge Q (assumed positive, for simplicity) at the origin (See fig 3.2) if this is
enclosed by a spherical surface of radius r, then, by symmetry, D due to Q is of constant magnitude
over the surface and is everywhere normal to the surface. Gauss’ law then gives

Q=§D-dS=D§;dS=D(4JTFI)

Fig 3.2

from which D = Q/4nr®. Therefore
Q Q

=™ ™
But, from Section 2.2, the electric field intensity due to Q is

Q

E= 5
4menr

a,

It follows that D = ¢,E.
More generally, for any electric field in an isotropic medium of permittivity €,

D=¢E

Thus, D and E fields will have exactly the same form, since they differ only by a factor which is a
constant of the medium. While the electric field E due to a charge configuration is a function of the
permittivity €, the electric fiux density D is not. In problems involving multiple dielectrics a distinct
advantage will be found in first obtaining D, then converting to E within each dielectric.



CHAPTER 4

DIVERGENCE and DIVERGENCE THEOEM
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4.1 divergence

There are two main indicators of the manner in which a vector field changes from point to point
throughout space. The first of these is divergence, which will be examined here. It is a scalar and

bears a similarity to the derivative of a function.
Divergence of the vector field A at the point P is defined by

A-dS

divA = i
v EA:EO Av

Here the integration is over the surface of an infinitesimal volume Auv that shrinks to point P.

4.2 Divergence in Cartesian coordinates

The divergence can be expressed for any vector field in any coordinate system. For the
development in cartesian coordinates a cube is selected with edges Ax, Ay, and Az parallel to the x,
¥, and z axes, as shown in Fig. 4-1. Then the vector field A is defined at P, the corner of the cube
with the lowest values of the coordinates x, y, and z.

A=A +Aa + A3,

N

Az
Pl 1

ay

Fig. 41



In Fig. 4-2 the cube is turned such that face 1 is in full view; the x components of A over the
faces to the left and right of 1 are indicated. Since the faces are small,

I A-dS=~—A,(x) Ay Az
left face

I A-dS=A,(x+Ax) Ay Az
right face

OA,
=~ +
[A,(x) = ] Ay Az

A (x) A (x + Ax)
B el T s
ds ds

Ax

Fig. 4-2

so that the total for these two faces is
A,
ox
The same procedure is applied to the remaining two pairs of faces and the results combined.
0A,

0A, OA
A-ds-s(—‘+—’+—)
§ ox Jy oz Ax &y Az

Ax Ay Az

Dividing by Ax Ay Az=Av and letting Av—0, one obtains
04, , 94, , 94,
ox dy oz
The same approach may be used in cylindrical (Problem 4.1) and in spherical coordinates.

19 194, 9A
divA=-—(rA,) +-—2+—=
VA= A L5 Y 5

(cartesian)

divA=

(cylindrical)

19 (4,sin6)+——54¢

12, .
divA =5 At 636 rsing op  pherica)

Example 4.1
Given the vector field A= Sx’(sin ?)-.. finddivA at x=1.

. 9 fc o, M) ,( J'l:x):r L. ax 5, m . ;X
o —_— = — = 1 — — -—
divA (Sx smz 5x oos2 2+ (l.I:su'n2 z:rx t::o.*r.2+10xsm2

and div AI,-; = 10.



4.3 Divergence of D
From Gauss’ law

D-dS
Av Av
In the limit,
D-dS 0
. =divD = lim Xem< _
Al.l,l-n.o Av =R Al.l,ToAv P

This important result is one of Maxwell’s equations for static fields:
dvD=p and divE=§

if € is constant throughout the region under examination (if not, div€E=p). Thus both E and D
fields will have divergence of zero in any isotropic charge-free region.

4.4 The DEL operator

Vector analysis has its own shorthand, which the reader must note with care. At this point a
vector operator, symbolized V, is defined in cartesian coordinates by

o), ,aC), .8()
V= P a + a a + 22 f,
In the calculus a differential operator D is sometimes used to represent d/dx. The symbols V and
[ are also operators; standing alone, without any indication of what they are to operate on, they
look strange. And so V, standing alone, simply suggests the taking of certain partial derivatives,
each followed by a unit vector. However, when V is dotted with a vector A, the result is the
divergence of A.

e Ay Ay p
ox oy oz

d a )
V-A= (au, +3y'l,, +‘—9;|,) (A8, +Am, +Am)=

Hereafter, the divergence of a vector field will be written V- A.

4.5 The Divergence Theorem

Gauss’ law states that the closed surface integral of D« dS is equal to the charge enclosed. If
the charge density function p is known throughout the volume, then the charge enclosed may be
obtained from an integration of p throughout the volume. Thus,

§D-d5=dev=Qm
But p=V-D, andso

§D-ds=j(v-n)du
This is the divergence theorem, also known as Gauss® divergence theorem. It is a three-dimensional
analog of Green'’s theorem for the plane. While it was arrived at from known relationships among
D, Q, and p, the theorem is applicable to any sufficiently regular vector field.

divergence theorem §A-JS=J(V-A)du
5 v

Of course, the volume v is that which is enclosed by the surface S.



CHAPTERS
The Electrostatic Field: Work, Energy, and Potential
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5.1 WORK DONE IN MOVING A POINT CHARGE

A charge Q experiences a force F in an electric field E. In order to maintain the charge in
equilibrium a force F, must be applied in opposition (Fig. 5-1):

F=QE F,=-QE

F, --—-Q. —F

Fig. 5-1
dW =F,-dl=-QE-dl
dl = dxa, + dya, + dza, (cartesian)
dl=dra, +rdga, + dza, (cylindrical)

dl=dra, +rdBay + rsin 8d¢pa,  (spherical)

5.2 CONSERVATIVE PROPERTY OF THE ELECTROSTATIC FIELD

The work done in moving a point charge from one location, B, to another, A, in a static electric
field is independent of the path taken. Thus, in terms of Fig. 5-2,

LE-dlz—LE-dl or i}@E-cﬂ=0

©)

Fig. 5-2

where the last integral is over the closed contour formed by (D) described positively and @) described
negatively. Conversely, if a vector field F has the property that $F-dl=0 over every closed
contour, then the value of any line integral of F is determined solely by the endpoints of the
path. Such a field F is called conservative; it can be shown that a criterion for the conservative

property is that the curl of F vanish identically



EXAMPLE 1. An electrostatic field is given by E=(x/2+2y)a, +2xa, (V/m). Find the work done in
moving a point charge Q =-20uC (a) from the origin to (4,0,0) m, and (b) from (4,0,0) m to (4,2,0) m.

(a) The first path is along the x axis, so that dl=dx a,.

dW = —QE- dl = (20 X 10"°)(’§‘ + Zy) dx

W= (20 x 1o-°)[ (§+2y)dx =80pu)
(b) The second path is in the a, direction, so that dl = dya,.

2
W = (20 x 10-°)L 2xdy =320 uJ

5.3 ELECTRIC POTENTIAL BETWEEN TWO POINTS

The potential of point A with respect to point B is defined as the work done in moving a unit
positive charge, Q,, from B to A.

w A
Van=g = —L E-dl (J/CorV)

5.4 POTENTIAL OF A POINT CHARGE

Since the electric field due to a point charge Q is completely in the radial direction,

A A Ta
Vasz_I E-di= ﬁf E.-dr-—‘ﬁHQ— ar_ O (1 1)
B i

5 =
4mey J,, T 4eq

fa 7w

5.5 POTENTIAL OF A CHARGE DISTRIBUTION

If charge is distributed throughout some finite volume with a known charge density p (C/m?),
then the potential at some external point can be determined. To do so, a differential charge at a

general point within the volume is identified
__dQ
4neyR

Integration over the volume gives the total potential at P:

pdv

vol 4n E(DR

5.6 GRADIENT

At this point another operation of vector analysis is introduced. Figure (5.3) shows two



neighboring points, M and N, of the region in which a scalar function V is defined. The vector
separation of the two points is

dr = dxa, +dya, +dza,

M(x,y,2)

z N(x+dx'y+dy'z+dz| 4 %V(x.).ﬂ:r,
\d 4

Vix.y.2)=¢
Y

(a) ®)

Fig (5.3)

It is noted that each term contains the partial derivative of V with respect to
distance in the direction of that pgnicular unit vector.

av av av

VW=—a +—a, +— i
| 4 o a + Fe a, + 32 a, (cartesian)
av oV oV
wWw=""a + " a, +— indri
a7t a‘pa* + 72 ™ (cylindrical)
1% av aV ]
YW arvtrae™  rengagte  (Pheial

While VV is written for grad V in any coordinate system, it must be remembered that the del
operator is defined only in cartesian coordinates.



