Electromagnetics 2/18/2018

Electricity and Magnetism

An Introduction to Vectors and Calculus

Ahmed Wael 2017 - 2018

University of Technology

Department of Laser and Optoelectronics Engineering

FLECTROMAGNETIC FIELDS By Ahmed W

<u> Lecture's Contents Part - I</u>

1. Basic Vector Algebra

- Scalars and Vectors
- Position and Distance Vector
- Vector Addition and Subtraction
- Vector Multiplication
- Triple Product of Scalar and Vector

2. Coordinate Systems

- Cartesian Coordinate System
- Cylindrical Coordinate System
- Spherical Coordinate System

3. Systems Transformation

- Cartesian to Cylindrical
- Cartesian to Spherical
- Spherical to Cylindrical

ELECTROMAGNETIC FIELDS By Ahmed W.

Electromagnetics 2/18/2018

Why Studying Vectors

- The Subject of electromagnetism is very fundamental and lots of new concepts are in contents.
- Forces between charges, Electric Field and Electric Field Lines, Energy and Potentials Magnetic Fields become clearly understandable in term of its magnitude and their associated direction in any medium.
- · Vector tells us the magnitude and where the direction is. OUR TOOL.
- In this lecture, vectors will be covered in details. Some useful examples will be separately presented during this lecture.

ELECTROMAGNETIC FIELDS By Ahmed W.

1. Basic Vector Algebra

- Scalars

- A single real number (positive or negative) is referred as a scalar value.
- Many Examples represent scalars such as Temperature and Pressure.
- Example:\\ $T = 290^{\circ} K$

- Vectors

- Many quantities are not complete without specifying their directions. Such quantities are well-known as vector quantities.
- An example of vector quantities is the velocity, where its complete figure can be understandable in term of its velocity and the direction that the object derived.
- Example:\\ v = 30 kmph North

ELECTROMAGNETIC FIELDS By Ahmed W.

Basic Vector Algebra

- Scalar and Vector Fields

- Most of the work in this module is concerned about vector and scalar fields.
- The vector or scalar field can be defined as a function that connects any arbitrary point to a position in space.
- R₁ and R₂ are defined as vectors position which they can be determined by its three position in the coordinate system.
- R_{12} is the distance vector between two the defined points which is given by $R_{12} = R_2 - R_1$

ELECTROMAGNETIC FIELDS By Ahmed W.

<u>ı. Basic Vector Algebra</u>

- Vector structure

• Any vector can be written as follow:

$$\vec{\mathbf{A}} = \mathbf{A}_{\mathbf{x}}\hat{\mathbf{x}} + \mathbf{A}_{\mathbf{v}}\hat{\mathbf{y}} + \mathbf{A}_{\mathbf{z}}\hat{\mathbf{z}}$$

- A_x , A_y , A_z are defined as the <u>vector components</u>.
- \hat{x} , \hat{y} , \hat{z} are known as the <u>unit vectors</u> of the vector \vec{A} .
- Unit vectors are vectors of unit lengths in the directions of x, y, z, respectively.
- Example:

$$\vec{\mathbf{A}} = 3\hat{\mathbf{x}} + 7\hat{\mathbf{y}} - 5\hat{\mathbf{z}}$$

ELECTROMAGNETIC FIELDS By Ahmed W.

1. Basic Vector Algebra

- Vector Magnitude and Direction
 - Vector magnitude:

$$\begin{split} \vec{\mathbf{A}} &= A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}} \\ A &= \left| \vec{\mathbf{A}} \right| = \sqrt{A_x^2 + A_y^2 + A_z^2} \end{split}$$

• The direction of the vector \vec{A} :

$$\hat{\mathbf{a}} = \frac{\vec{\mathbf{A}}}{\mathbf{A}} = \frac{\mathbf{A}_{\mathbf{X}}\hat{\mathbf{x}} + \mathbf{A}_{\mathbf{y}}\hat{\mathbf{y}} + \mathbf{A}_{\mathbf{z}}\hat{\mathbf{z}}}{\sqrt{\mathbf{A}_{\mathbf{X}}^2 + \mathbf{A}_{\mathbf{y}}^2 + \mathbf{A}_{\mathbf{z}}^2}}$$

ELECTROMAGNETIC FIELDS By Ahmed W.

1. Basic Vector Algebra

- Vector Addition:

Lets A and B are two vectors, where:

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$$
$$\vec{\mathbf{B}} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$$

$$\vec{\mathbf{A}} + \vec{\mathbf{B}} = (\mathbf{A}_{x} + \mathbf{B}_{x})\hat{\mathbf{x}} + (\mathbf{A}_{y} + \mathbf{B}_{y})\hat{\mathbf{y}} + (\mathbf{A}_{z} + \mathbf{B}_{z})\hat{\mathbf{z}}$$

- Vector Subtraction:

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$$

$$\vec{\mathbf{B}} = B_{x}\hat{\mathbf{x}} + B_{y}\hat{\mathbf{y}} + B_{z}\hat{\mathbf{z}}$$

$$\vec{\mathbf{A}} - \vec{\mathbf{B}} = (\mathbf{A}_{x} - \mathbf{B}_{x})\hat{\mathbf{x}} + (\mathbf{A}_{y} - \mathbf{B}_{y})\hat{\mathbf{y}} + (\mathbf{A}_{z} - \mathbf{B}_{z})\hat{\mathbf{z}}$$

- Notes:
 - $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
 - $\overrightarrow{A} \overrightarrow{B} \neq \overrightarrow{B} + \overrightarrow{A}$

ELECTROMAGNETIC FIELDS By Ahmed W.

1. Basic Vector Algebra

- A pair of vectors \vec{A} and \vec{B} shown in (a) are added by head-to-tail method (b) and by completing the trapezoid (c).
- In (d) the vector \vec{B} is subtracted from vector \vec{A} .

1. Basic Vector Algebra

- Dot (Scalar) Multiplication
 - Lets A and B are two vectors:

$$\vec{\mathbf{A}} = \mathbf{A}_{\mathbf{x}}\hat{\mathbf{x}} + \mathbf{A}_{\mathbf{y}}\hat{\mathbf{y}} + \mathbf{A}_{\mathbf{z}}\hat{\mathbf{z}}$$

$$\vec{\mathbf{B}} = B_{\mathbf{x}}\hat{\mathbf{x}} + B_{\mathbf{y}}\hat{\mathbf{y}} + B_{\mathbf{z}}\hat{\mathbf{z}}$$

• The dot product of two vectors:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = AB \cos \theta$$

 θ is the smallest angle between the two vectors.

- The result of dot product is a SCALAR.
- The dot product has its maximum magnitude at $\theta = 0$.
- The dot product it has ZERO magnitude at $\theta = \pi/2$.
- $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}}$

ELECTROMAGNETIC FIELDS By Ahmed W.

Basic Vector Algebra

- Dot (Scalar) Multiplication

$$\cos\theta = \frac{A_x B_x + A_y B_y + A_z B_z}{AB}$$

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \mathbf{A}_{\mathbf{x}} \mathbf{B}_{\mathbf{x}} + \mathbf{A}_{\mathbf{v}} \mathbf{B}_{\mathbf{v}} + \mathbf{A}_{\mathbf{z}} \mathbf{B}_{\mathbf{z}}$$

- The dot product of two identical unit vectors is always ONE.
- The dot product of two non-identical unit vectors is always ZERO.
- Example:\\

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \mathbf{1}$$

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{z}} = \mathbf{0}$$

ELECTROMAGNETIC FIELDS By Ahmed W.

1. Basic Vector Algebra

- Cross Product
 - Lets \overrightarrow{A} and \overrightarrow{B} are two vectors:

$$\vec{\mathbf{A}} = \mathbf{A}_{\mathbf{x}}\hat{\mathbf{x}} + \mathbf{A}_{\mathbf{y}}\hat{\mathbf{y}} + \mathbf{A}_{\mathbf{z}}\hat{\mathbf{z}}$$

$$\vec{\mathbf{B}} = B_{\mathbf{x}}\hat{\mathbf{x}} + B_{\mathbf{v}}\hat{\mathbf{y}} + B_{\mathbf{z}}\hat{\mathbf{z}}$$

• The cross product of two vectors:

$$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = AB \sin \theta$$

$$=\begin{bmatrix}\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}}\\ A_x & A_y & A_z\\ B_x & B_y & B_z\end{bmatrix} = (A_yB_z - A_zB_y)\hat{\boldsymbol{x}} + (A_zB_x - A_xB_z)\hat{\boldsymbol{y}} + (A_xB_y - A_yB_x)\hat{\boldsymbol{z}}$$

- The cross product is ZERO for collinear vectors ($\theta = 0$).
- The cross product is MAX for perpendicular vectors ($\theta = \frac{\pi}{2}$).

ELECTROMAGNETIC FIELDS By Ahmed W.

Electromagnetics

1. Basic Vector Algebra

- Cross Product

- The resultant of cross product of two vectors is a new vector perpendicular to the direction of both.
- The cross product of two identical unit vectors is ZERO.
- The cross product of two non-identical unit vectors is new vector perpendicular to both of them.
- $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$
- Example:\\

$$\hat{\mathbf{x}} \times \hat{\mathbf{x}} = \mathbf{0}$$

$$\hat{\mathbf{x}} \times \hat{\mathbf{z}} = \hat{\mathbf{y}}$$

ELECTROMAGNETIC FIELDS By Ahmed W.

1. Basic Vector Algebra

•
$$\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$$

$$\bullet \quad \overrightarrow{\mathbf{A}} \cdot \left(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}} \right) = \begin{vmatrix} A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{vmatrix}$$

•
$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$

•
$$\vec{A} \times (\vec{B} \times \vec{C}) \neq (\vec{A} \times \vec{B}) \times \vec{C}$$

ELECTROMAGNETIC FIELDS By Ahmed W.

Electromagnetics 2/18/2018

2. Coordinate Systems

Introduction

- Our reference point is usually the origin
- The location of any object or point in space can be defined by intersecting three perpendicular surfaces.
- We do study THREE coordinate systems:
 - Cartesian (Rectangular) Coordinates.
 - Circular (Cylindrical) Coordinates.
 - * Spherical Coordinates.

ELECTROMAGNETIC FIELDS By Ahmed W.

2. Coordinate Systems

- Cartesian Coordinates

- With respect to the origin (0,0,0), we define any object in space by intersection of *THREE PERPENDICULAR* planes parallel to (x,y,z) axis:
 - ❖ x plane perpendicular to x axis
 - ❖ y plane perpendicular to y axis
 - z plane perpendicular to z axis
- A right hand coordinate system can specify the directions of Cartesian coordinate:

"Curls of the fingers in the direction from x-axis to y in the direction of +ve x-axis and the middle finger in the direction of +ve y-axis and the thump is referring to the +ve z-axis.

ELECTROMAGNETIC FIELDS By Ahmed W.

2. Coordinate Systems

- Surface and Volume deferential

• The differential length:

$$d\hat{\mathbf{l}} = dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{y}} + dz\,\hat{\mathbf{z}}$$

• Each surface has an area:

$$d\hat{\mathbf{S}}_x = d_y d_z$$

$$d\hat{\mathbf{S}}_y = d_x d_z$$

$$d\boldsymbol{\hat{S}_z} = \ d_x d_y$$

• The volume of the cube:

$$d\widehat{\mathbf{V}} = d_x d_y d_z$$

ELECTROMAGNETIC FIELDS By Ahmed W.

Electromagnetics 2/18/2018

Coordinate Systems

Cylindrical Coordinates

- The location of any object in space can be defined by intersecting of three perpendicular surface of circular or cylindrical coordinated parameters ($\hat{r}, \widehat{\Phi}, \hat{z}).$
- The unit vectors are: $\hat{\mathbf{r}}$, $\hat{\Phi}$, $\hat{\mathbf{z}}$.
- The direction of (\hat{k}) is independent of position.
- $\hat{\mathbf{r}}, \hat{\emptyset}$ are changing in direction.
- <u>NOTE:</u>

 - For $\emptyset = 0$; $\hat{\mathbf{r}} = \hat{\mathbf{x}}$ $\hat{\mathbf{\Phi}} = \hat{\mathbf{y}}$ For $\emptyset = \frac{\pi}{2}$: $\hat{\mathbf{r}} = \hat{\mathbf{y}}$ $\hat{\mathbf{\Phi}} = -\hat{\mathbf{x}}$

ELECTROMAGNETIC FIELDS By Ahmed W.

2. Coordinate Systems

- Cylindrical Coordinates

• The differential length is given by:

$$d\hat{\mathbf{l}} = dr \,\hat{\mathbf{r}} + rd\emptyset \,\widehat{\Phi} + dz \,\widehat{\mathbf{z}}$$

• Each surface has an area:

$$\begin{split} \mathrm{d}\widehat{\boldsymbol{S_{\mathrm{r}}}} &= \, \mathrm{r} \, \mathrm{d}_{\emptyset} \mathrm{d}_{\mathrm{z}} \\ \mathrm{d}\widehat{\boldsymbol{S_{\emptyset}}} &= \, \mathrm{d}_{\mathrm{r}} \mathrm{d}_{\mathrm{z}} \\ \mathrm{d}\widehat{\boldsymbol{S_{\mathrm{z}}}} &= \mathrm{r} \, \mathrm{d}_{\mathrm{r}} \mathrm{d}_{\emptyset} \end{split}$$

• The volume is given by: $d\textbf{V} = r d_r d_{\phi} d_z$

ELECTROMAGNETIC FIELDS By Ahmed W.

2. Coordinate Systems

- Spherical Coordinates

• The differential length is given by:

$$d\hat{\mathbf{l}} = dR \,\hat{\mathbf{r}} + rd\theta \,\widehat{\Theta} + r\sin\theta \,d\emptyset \,\widehat{\Phi}$$

• Each surface has an area given by:

$$\begin{split} d\widehat{\boldsymbol{S_R}} &= \ R^2 sin\theta \ d_{\theta} d_{\emptyset} \\ d\widehat{\boldsymbol{S_{\theta}}} &= R sin\theta \ d_{r} d_{\emptyset} \\ d\widehat{\boldsymbol{S_{\phi}}} &= R d_{r} d_{\theta} \end{split}$$

- The volume is given by:

$$d\hat{\mathbf{V}} = R^2 \sin\theta \, d_r d_\theta d_\emptyset$$

ELECTROMAGNETIC FIELDS By Ahmed W.

2/18/2018

<u> 2. Coordinates Systems - Summary</u>

Summary

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates	
Base vectors properties	$\begin{split} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}} &= \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}} &= \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}} &= \hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}} &= \hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}} &= \hat{\mathbf{y}} \end{split}$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} \cdot \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \cdot \hat{\boldsymbol{\varphi}} = \hat{\boldsymbol{\varphi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$ $\hat{\mathbf{r}} \times \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}}$ $\hat{\boldsymbol{\varphi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}}$	$\begin{split} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}} &= \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = 1 \\ \hat{\mathbf{R}} \cdot \hat{\mathbf{\theta}} &= \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{R}} = 0 \\ \hat{\mathbf{R}} \times \hat{\mathbf{\theta}} &= \hat{\mathbf{\phi}} \\ \hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} &= \hat{\mathbf{R}} \\ \hat{\mathbf{\phi}} \times \hat{\mathbf{R}} &= \hat{\mathbf{\theta}} \end{split}$	
Dot product, A·B =	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_{\phi} B_{\phi} + A_z B_z$	$A_R B_R + A_{\theta} B_{\theta} + A_{\phi} B_{\phi}$	
Cross product, A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \end{vmatrix}$	$ \begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{\boldsymbol{\theta}} & A_{\boldsymbol{\phi}} \\ B_R & B_{\boldsymbol{\theta}} & B_{\boldsymbol{\phi}} \end{vmatrix} $	
Differential length, dl =	$\hat{\mathbf{x}}dx + \hat{\mathbf{y}}dy + \hat{\mathbf{z}}dz$	$\hat{\mathbf{r}}dr + \hat{\mathbf{\phi}}rd\phi + \hat{\mathbf{z}}dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin \theta d\phi$	
Differential surface areas	$d\mathbf{s}_{x} = \hat{\mathbf{x}} dy dz$ $d\mathbf{s}_{y} = \hat{\mathbf{y}} dx dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} dx dy$	$ds_r = \hat{\mathbf{r}} r d\phi dz$ $ds_{\phi} = \hat{\boldsymbol{\phi}} dr dz$ $ds_z = \hat{\mathbf{z}} r dr d\phi$	$ds_{R} = \hat{R}R^{2} \sin\theta d\theta d\phi$ $ds_{\theta} = \hat{\theta}R \sin\theta dR d\phi$ $ds_{\phi} = \hat{\phi}R dR d\theta$	
Differential volume, $dv =$	dxdydz	rdrdødz	$R^2 \sin\theta dR d\theta d\phi$	

ELECTROMAGNETIC FIELDS By Ahmed W.

2. Coordinates Systems - Summary

Summary

	Cartesian Coordinates	Cylindrical Coordinates	$ \begin{array}{c} \textbf{Spherical} \\ \textbf{Coordinates} \\ \hline \hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = 1 \\ \hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}} = 0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \\ \end{array} $	
Base vectors properties	$\begin{split} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}} &= \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}} &= \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}} &= \hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}} &= \hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}} &= \hat{\mathbf{y}} \end{split}$	$ \hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} \cdot \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1 $ $ \hat{\mathbf{r}} \cdot \hat{\boldsymbol{\varphi}} = \hat{\boldsymbol{\varphi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0 $ $ \hat{\mathbf{r}} \times \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} $ $ \hat{\boldsymbol{\varphi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}} $ $ \hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} $		
Dot product, A · B =	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_{\phi} B_{\phi} + A_z B_z$	$A_R B_R + A_{\theta} B_{\theta} + A_{\phi} B_{\phi}$	
Cross product, A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\boldsymbol{\phi}} & A_z \\ B_r & B_{\boldsymbol{\phi}} & B_z \end{vmatrix}$	$\left \begin{array}{ccc} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_{\boldsymbol{\theta}} & A_{\boldsymbol{\phi}} \\ B_R & B_{\boldsymbol{\theta}} & B_{\boldsymbol{\phi}} \end{array}\right $	
Differential length, dl =	$\hat{\mathbf{x}}dx + \hat{\mathbf{y}}dy + \hat{\mathbf{z}}dz$	$\hat{\mathbf{r}}dr + \hat{\mathbf{\phi}}rd\phi + \hat{\mathbf{z}}dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin\theta d\phi$	
Differential surface areas	tial surface areas $ ds_x = \hat{x} dy dz ds_y = \hat{y} dx dz ds_z = \hat{z} dx dy $		$ds_R = \hat{\mathbf{R}}R^2 \sin\theta d\theta d\phi$ $ds_\theta = \hat{\mathbf{\theta}}R \sin\theta dR d\phi$ $ds_\phi = \hat{\mathbf{\phi}}R dR d\theta$	
Differential volume, $dv =$	dxdydz	rdrdødz	$R^2 \sin\theta dR d\theta d\phi$	

ELECTROMAGNETIC FIELDS By Ahmed W.

4. Systems Transformation

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[4]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r\cos\phi$ $y = r\sin\phi$ $z = z$	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\boldsymbol{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[4]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left[\sqrt[4]{x^2 + y^2} / z \right]$ $\phi = \tan^{-1} (y/x)$	$\begin{split} \hat{\mathbf{R}} &= \hat{\mathbf{x}} \sin \theta \cos \phi \\ &+ \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta \\ \hat{\mathbf{\theta}} &= \hat{\mathbf{x}} \cos \theta \cos \phi \\ &+ \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta \\ \hat{\mathbf{\phi}} &= -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi \end{split}$	$\begin{aligned} A_R &= A_x \sin\theta \cos\phi \\ &+ A_y \sin\theta \sin\phi + A_z \cos\theta \\ A_\theta &= A_x \cos\theta \cos\phi \\ &+ A_y \cos\theta \sin\phi - A_z \sin\theta \\ A_\phi &= -A_x \sin\phi + A_y \cos\phi \end{aligned}$
Spherical to Cartesian	$x = R\sin\theta\cos\phi$ $y = R\sin\theta\sin\phi$ $z = R\cos\theta$	$\begin{split} \hat{\mathbf{x}} &= \hat{\mathbf{R}} \sin \theta \cos \phi \\ &+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi \\ \hat{\mathbf{y}} &= \hat{\mathbf{R}} \sin \theta \sin \phi \\ &+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi \\ \hat{\mathbf{z}} &= \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta \end{split}$	$A_{X} = A_{R} \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_{Y} = A_{R} \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_{z} = A_{R} \cos \theta - A_{\theta} \sin \theta$
Cylindrical to spherical	$R = \sqrt[4]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R\sin\theta$ $\phi = \phi$ $z = R\cos\theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

ELECTROMAGNETIC FIELDS By Ahmed W.