Loop Gain

Contrary to amplifying the radiation, there are many **losses**:

- Scattering and absorption losses at the end mirrors.
- > Output radiation through the output coupler.
- \succ Scattering and absorption losses in the active medium, and at the side walls of the laser.
- Diffraction losses because of the finite size of the laser components.

These losses cause some of the radiation not to take part the lasing process.

A necessary condition for lasing is that the total gain will be a little higher than all the losses.

Loop Gain (G_L)

The round trip path of the radiation through the laser cavity: The path is divided to sections numbered by 1-5, while point same point as "1". By definition, **Loop Gain** is given by:

 $\mathbf{G}_{\mathrm{L}} = \mathbf{E}_{5} / \mathbf{E}_{1}$

G_L = Loop Gain.

 $\mathbf{E} =_{\mathbf{1}}$ Intensity of radiation at the beginning of the loop.

 E_5 = Intensity of radiation at the end of the loop.

Calculating Loop Gain (G_L) Without Losses

- G_A = Active medium gain
- $E_2 = G_A * E_1$
- length of the cavity, such that the active medium feel the length of the laser cavity. On the way from point "2" to point "3", As a result: $E_3 = R_1 * G_A * E_1$
- through the active medium, and amplified. Thus: $E_4 = R_1^* G_A^{2*} E_1$
- the output coupler, which have a reflectivity R_2 . Thus: $E_5 = R_1^* R_2^* G_A^{2*} E_1$ This completes the loop.

Calculating Loop Gain (G_L) With Losses

We assume that the losses occur uniformly along the length cavity (L).

In analogy to the Lambert formula for losses , we define **loss** coefficient (a), absorption factor M: M = exp(-2aL) a= Loss coefficient

2L = **Path Length**, which is twice the length of the cavity. Adding the **loss factor (M)** to the equation of E_5 :

 $E_5 = R_1^* R_2^* G_A^{2*} E_1^* M$

From this we can calculate the **Loop gain**:

$$G_{L} = E_{5}/E_{1} = R_{1} R_{2} G_{A}^{2} M$$

Calculating Gain Threshold (G_L)_{th}

As we assumed uniform distribution of the **loss coefficient (a)**, we now define **gain coefficient (b)**, and assume **active medium gain (G_A)** as distributed uniformly along the length of the cavity.

 $G_A = exp(+bL)$

Substituting the last equation in the Loop Gain:

 $G_L = R_1^* R_2^* exp(2(b-a)L))$

Conclusion:

There is a threshold condition for amplification, in order to create oscillation inside the laser. This Threshold Gain is marked with index "th".

For continuous laser, the threshold condition is:

 $(G_L)_{th} = 1 = R_1 R_2 G_A M = R_1^* R_2^* exp(2(b-a)L)$

Mathematical Expressions of fluorescence linewidth

Fluorescence linewidth is expressed by wavelengths, or frequencies, of two points on the spontaneous emission graph at half the maximum height.

$$\Delta \nu = |\nu_2 - \nu_1| = \left|\frac{c}{\lambda_2} - \frac{c}{\lambda_1}\right| = \left|\frac{c\lambda_1 - c\lambda_2}{\lambda_1\lambda_2}\right| = \frac{c\Delta\lambda}{\lambda_1\lambda_2}$$

The linewidth (D1) is much smaller than each of the wavelengths (D1<<l₁,l₂).

Thus the **approximation**: $l_1 * l_2 =$ can be used.

 l_0 = Wavelength at the center of emission spectrum of the laser.

The result is:

In a similar way:

these mathematical relations will be used for determining the **coherence** of the laser.

Broadening the Fluorescence line

Certain mechanisms are responsible for broadening the linewidth of a laser:

- 1. Natural broadening.
- 2. Doppler Broadening.
- 3. Pressure broadening.

For many applications, especially when <u>temporal coherence is</u> required a small linewidth of the emitted laser wavelength is required.

Natural broadening.

This broadening is always present, and comes from the finite transition time from the upper laser level to the lower laser level.

Natural linewidth is narrow: 10⁴ - 10⁸ [Hz], compared to the radiation frequency of visible light: 10¹⁴ [Hz].

Each energy level has a specific width (Dn), and specific lifetime (Dt). Natural broadening results from the Heisenberg uncertainty principle: $DE^*Dt > h$ $DE = h^*$ Dn Dn > 1/Dt

Numerical examples: $Dt = 10^{-8} [s] = = > Dn = 10^{8} [Hz]$ $Dt = 10^{-4} [s] = = > Dn = 10^{4} [Hz]$

The longer the specific energy level transition lifetime, the narrower is its linewidth.

Doppler Broadening

Doppler shift is a well known phenomena in wave motion.

It occurs when the source is in relative motion to the receiver.

The frequency detected is shifted by an amount determined by the **relative velocity between the source and the receiver.**

Since gas molecules are in constant motion in random directions, each molecule emit light while it is moving relative to the laser axis in a different direction. These distribution of frequency shifts cause the broadening of the laser linewidth.

Doppler broadening occur especially in <u>gas lasers</u>, as a result of movement of gas molecules.

Its influence is mostly in low pressure gas lasers

Pressure (collisions) broadening

It is caused by collisions between the molecules of the gas. Pressure broadening is the **largest broadening mechanism in gas lasers** with pressure of more than 10 mm Hg.

As the pressure increase, the broadening increase.

At constant pressure (P), as the temperature (T) increases:

PV = nRT

P = const = = > V increases when T increases.

Since the Volume (V) increases, the number of collisions decrease. Thus, pressure ((collisions) broadening decrease.

Numerical example:

1.At room temperature, the linewidth of CO_2 laser with gas pressure of 10 [torr] is 55 [MHz].

2.At room temperature, the linewidth of CO_2 laser with gas pressure of 100 [torr] is 500 [MHz].

3.Above 100 [torr], the increase rate of broadening is about 6.5 [MHz] for each increase in pressure of 1 [torr].

Linewidth broadening

the result of broadening of the fluorescence linewidth.

