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The polar coordinates
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Polar conrdinates are oot

I this section, we study polar coordinates and their relation to Cantesian coordinates.
‘While a point in the plane has just one pair of Cantesian coordinates, it has infinitely many
pairs of polar coordinates. This has interesting consequences for graphing, as we will see
in the next section.

Definition of Polar Coordinates

To define polar coordinates, we first fix an orkgln 0 (called the pole) and an Inbtlal ray
from (3 {Figure 10.35). Then each point P can be located by assigning to it a polar esordi-
nate palr (¥, @} in which r gives the directed distance from € fo P and @ gives the directed
angle from the initial ray to ray (F.

Polar Coordinates

Plr, 8]
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As in trigonometry, & is positive when messured counterelockwise and negative when
measured clockwise. The angle associated with a given point is not unigue. For instance,
the point 2 units from the origin along the ray 8 = /6 has polar coordinates » = 2,
A = &/6. It also has coordinates # = 2,8 = — 1 1&,/6 (Figure [0.36). There are occasions
when we wish to allow » to be negative. That is why we use directed distance in defining
Pix, #). The point M2, 7e=/6] can be reached by turning Ta/6 radians counterclockwise
from the initial ray and going forward 2 units (Figure 102371, It can also be reached by turn-
ing w6 radians counterclockwise from the initial ray and going haeckward 2 units. So the
point alse has polar coordinates » = —2,8 = w/6.

FIGURE 10.37 Palar coand
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EXAMPLE 1 Finding Polar Coordinates
Find all the polar coordinates of the point PL2, m/6).

Solution Wi sketch the initial ray of the coordinate system, draw the ray from the ori-
gin that makes an angle of /6 radians with the initial ray, and mark the point (2, 7/6]
{Figure 10.38). We then find the angles for the other coordinate pairs of P in which ¢ = 2
and # = —2.

FIGURE 10.38 The point 12, @6} has infinitely many
polar coordinate pairs | Example 1.

For ¢ = 2, the complete list of angles is

L r w
A E:I:Z-u, :1:411-. E:tﬁrr,

For ¥ = —Z, the angles ane
_sm 5w _sm _sm
r ﬁ:tz:r. 514"’- ﬁ:t&a'.
The corresponding coordinate pairs of P are

(2,£+2ﬂ'ﬂ:], n=a, =l =2,

f
and
(—2.—%’" + Enw), n=10, £, £2,....
When r = 0, the formulas give (2, #/6) and (-2, =5 /6). When u = 1, they give
(2, 13a/6) and ( —2, Tw/6), and s0 on. =
F=i
l Polar Equations and Graphs
X If we hold # fixed at a constant value # = g # 0, the point Plx, @) will lie [a| units from

the origin 2. As @ varies over any interval of bength 21, P then traces a circle of radius |a|
centered at £ (Figure 10.39).
If we hold # fixed at a constant value 8 = &, and let r vary between —o0 and oo
FIGURE 10.39  The polor equation fora 1€ pOint Plr, §) traces the line through O that makes an angle of measure 8; with the

circle isr = a. initial ray.
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FIGURE 10.41 The usual way 1o relate
polar aml Caresian coondiates.

Equation Craph

F=ua Circle radius | a| centered at O

&=y Line through € making am angle & with the initial ray
EXAMPLE 2 Finding Polar Equations for Graphs

(a) #»= landr =
(b) 8 = =/6, &

—1 are equations for the circle of radius | centered at (.

= Ta/6,and # = —5&,6 are equations for the line in Figure 10.38.
u

Equations of the fonm ¢ = g and @ = 8y can be combined to define regions, segmients,
and rays.
EXAMPLE 3 Identifying Graphs
Giraph the sets of points whose polar coordinates satisfy the follewing conditions.

{a) 1 =prF=12 and 0 =@ =

(ST

By ~3=r=2 and #

FAE

{ep # =10 and f

N

S

& {no restriction on #)

m
) =0

Solution  The graphs are shown in Figure [0.40. ]

Relating Polar and Cartesian Coordinates

‘When we use both polar and Cartesian coordinates in a plane, we place the two origins o-
gether and take the initial polar ray as the positive v-axis. The ray 8 = &/2, ¢ = 0, be-
comes the positive y-axis (Figure 10410 The two coordinate systemis are then related by
the following equations.

Equations Relating Polar and Cartestan Coordinates

X = reoaf, ¥ = rain#, e +_|r'3 = p2

The first two of these equations uniquely determine the Cartesian coordinates x and v
given the polar coordinates r and 8. On the other hand, if x and v are given, the third equa-
tion gives two possible choices for r {a positive and a negative value). For each selection,
there is a unigue # = [, 29 ) satisfying the first two equations, each then giving a polar co-
ordinate representation of the Cartesian point (%, y). The other polar coordinate representa-
tiong for the point can be determined from these two, as in Example 1.



EXAMPLE 4  Equivalent Equations

Polar equation Cartesian equivalent
Fopsf = 2 =12
s fsin = 4 =4
rreos @ — prainte = 1 - pl=]
# =1+ Zrcoad Fokxt-dr—1=0
r=1— cosf ettt st -t =
With some curves, we are better off with polar coordinates; with others, we aren't ]

EXAMPLE S  Converting Cartesian to Polar
Find a polar equation for the circle x* + (v — 3)° = 9 (Figure 10.42).

LI I
or
r=fhsind Solution
Pty - t+9=29 Expand ([ — 31
i1, 34 .,:1 + _I'J — ﬁj' =1 Tl W% cancel.
# — Grsing =0 CAyEr
= X r=0 or r— Gging =10
= hgin# Includes hath possibilities
FIGURE 10142 The circle in Example 5. We will say more about polar equations of conic sections in Section 10.8. ]

EXAMPLE 6  Converting Polar to Cartesian

Replace the following polar equations by equivalent Cartesian equations, and identify
their graphs.

{a) roosd = —4

(b} +% = drcosf

= ;
2eosd — sind

ey »

Solution Wiz use the substitutions #cos @ = r, rFsinf = y, rFl= gt s _vl.

{a) roosd = —4
The Cartesian equation: rFeosfl = —4
x=—4
The graph: Vertical line through x = —4 on the r-axis

(b} #* = dreosf
The Cartesian equation: ¢ = droos @
¥t =
x? = dx +}-2 =
#—dr+ 4+ }'2 =4 Completieg de square
-2+ pt=4
The graph: Cirele, radivs 2, center (&, &) = (2, 0)

=4
2eosad — gind

e} »

The Cartesian equation: A2coad — sinf) = 4
Zreoafl — rsind = 4
x—yp=4
y=x—4

The graph: Line, slope m = 2, y-intercept i = —4



Graphing in polar coordinates

This section describes techniques for graphing equations in polar coordinates.

Symmetry

Figure 10.43 illustrates the standard polar coordinate tests for symimetry.
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FIGURE 10.43  Three tests for symmetry in podar coondinates.

Symmetry Tests for Polar Graphs

L Syemietry aheourr the x-axis: 1 the point (F, #) lies on the graph, the point
(¥, =81 or {—F, # — #] lies on the graph (Figure 10.43a).

L. Syemietry abaur the y-axis: 1 the point (F, &) lies on the graph, the point
[#, 7 — @) or {—r, —#] lies on the graph (Figure 10.43b).

1. Svemietry abour the ovigin: If the point (#, @) lies on the graph, the point
[—x, 8 or{r, @ + ) lics on the graph (Figure 10.43c).

Slopa

The slope of a polar curve ¢ = fI#) is given by dv/de, not by # = df(df. Tooses why,
think of the graph of [ as the graph of the parametric equations

= roosl = fld)cosd, ¥ = rsinf = fl#)aind.
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