Graphing in polar coordinates

This section describes techniques for graphing equations in polar coordinates.

Symmetry

Figure 10.43 illustrates the standard polar coordinate tests for symimetry.
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FIGURE 10.43  Three tests for symmetry in podar coondinates.

Symmetry Tests for Polar Graphs

L Syemietry aheourr the x-axis: 1 the point (F, #) lies on the graph, the point
(¥, =81 or {—F, # — #] lies on the graph (Figure 10.43a).

L. Syemietry abaur the y-axis: 1 the point (F, &) lies on the graph, the point
[#, 7 — @) or {—r, —#] lies on the graph (Figure 10.43b).

1. Svemietry abour the ovigin: If the point (#, @) lies on the graph, the point
[—x, 8 or{r, @ + ) lics on the graph (Figure 10.43c).

Slopa

The slope of a polar curve ¢ = fI#) is given by dv/de, not by # = df(df. Tooses why,
think of the graph of [ as the graph of the parametric equations

= roosl = fld)cosd, ¥ = rsinf = fl#)aind.



EXAMPLE 2 Graph the Curve % = dens 6.
Solubion  The equation #° = 4 cos 8 requires cos# = 0, so we get the entine graph by
running & from —a/2 o /2. The curve is symimetric about the v-axis because
[ #) on the graph = r* = dcos #
=t = Joos—H) cosll = cos (-
=+ [r, —#) on the graph.
The curve is also symmetric about the origin because
(¥, &) on the graph = r* = 4 cos @
= (=1 = 4cosd
= [—r, @] on the graph.

Together, these two symmetries imply symimetry about the p-axis

The curve passes through the origin when @ = —/2 and @ = /2. It has a vertical
tangent both times because tan A is infinite.

For each value of @ in the interval between —=/'2 and a2, the formula »* = 4 cos @
gives two values of

F= 2% sl
We make a short table of values, plot the corresponding poings, and use information

about symimetry and tangents to guide us in connecting the points with a smooth curve
(Figure 10.45) ]
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FIGURE 10.45 The graph of r* = 4 cos @ . The arraws show the direction
of increasing @ . The values of rin the @hle ane roanded { Example 2).

A Technigue for Graphing

Ome way to graph a polar equation » = f{f) is to make a table of (r, #-values, plog the
corresponding peints, and connect them in order of increasing @ This can work well if
enough points have been plotted to reveal all the loops and dimples in the graph. Another
method of graphing that is usually quicker and more reliable is to

1. first graph # = fi#) in the Carresian ri-plane,
1. thenuse the Cartesian graph as a “table” and guide to sketch the pedar coordinate graph.
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FIGURE 10.46 To plot e = f{#) in the
Cartesian rffplane m b)), we first plot

r* = sin 2f in the r8-plane in (2} and then
ignire the values of @ for which sin 26 15
nepative. The radii fram the sketch in (b}
cower the podar graph of the lemniscate in
(o) twice (Example 3).

This method is better than simple point plotting because the first Cartesian graph,
evien when hastily drawn, shows at a glance where # is positive, negative, and nonexistent,
as well as where Fis increasing and decreasing. Here's an example.

EXAMPLE 3 A Lemniscate
Giraph the curve

¥t = sin2d.

Solution Here we begin by plotting #* {not /) as a function of @ in the Cartesian
#g-plane. See Figure 10.46a. We pass from there to the graph of r = = “/sin 24 in the
i-plane (Figure 10.46b), and then deaw the polar graph (Figure 10.46c). The graph in
Figure 1046k “covers” the final polar graph in Figure 1046 tvice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halwves. The
double covering does no harm, however, and we actually leam a litthe more abowt the be-
havior of the function this way. ]

Finding Pointz Where Polar Graphs Intersect

The fact that we can represent a point in different ways in polar coordinates makes extra
care necessary in deciding when a point lies on the graph of a polar equation and in deter-
mining the points in which polar graphs intersect. The problem is that a point of interasc-
tion may satisfy the equation of one curve with polar coordinates that are different from
the ones with which it satisfies the equation of another curve. Thus, solving the equations
of two curves simultaneously may not identify all their points of inersection. One sure
way to identify all the points of intersection is to graph the equations.

EXAMPLE 4  Deceptive Polar Coordinates

Show that the point (2, &2} lies on the curve » = 2 cos 28,

Solution It may seem at first that the point (2, #/2) does not lie on the curve because
substituting the given coordinates into the equation gives

2

1= 2cm2(1) =Yomsm = -2,

which is not a true equality. The magnitude is right, but the sign is wrong. This suggesis
looking for a pair of coordinates for the same given point in which r is negative, for exam-
ple, {—=2, —{=/2]1). If we try these in the equation » = 2 cos 28, we find

-2= 2:.:..42(—%) =2-1) = -2,
and the equation is satisfied. The painti2, 7/2) does lie on the curve. ]

EXAMPLE 5  Elusive Intersection Points
Find the points of intersection of the curves

= deos# and r=1—cos@.



Solution In Cartesian coordinates, we can always find the poins where two curves
croas by solving their equations simultanecusly. In polar coordinates, the story is different.
Simultancous soluiion may reveal some intersection points without revealing odhers. In
ithis example, simultanecus solution reveals only two of the four intersection points. The
apihers are found by graphing. {(Also, see Exercise 49.)

If we substituie cos @ = ¢34 in the equation » = 1 — cos &, we get

3

F=1—cosl =1 — rT
4 =4 -
P dr—4=0
Po=—2 4 232, {peadratic formuls
The valse r = —2 — 2%'2 has too large an abzolwie value o belong 1o sither curve.
The values of @ corresponding o » = —2 + 2% are
8 =cos (1l —r Fromr = | — com i
= Eﬂﬁ-—'[l - [1\-";2 - El,lll,'l Setr = 2%/2 — 2,
= cos '[3 — 2%/2)
= +&07. Rowsmded 1o the nearest degres
We have thus identified oo intersection points: (#, &) = (22 — 3, =807,
[f wi graph the equations #* = dcos @ and F = | — cos # together (Figure 10.47), as

wie can nosw do by combining the graphs in Figures 10,44 and 1043, we see that the curves
also intersect at the point {2, o) and the origin. Why weren't the r~values of these points
revealed by the simultaneous solution? The answer is that the points (0, 0} and {2, ) are
o on the curves “simultansously” They are not reached af the same value of #. On the
curve r = | — cos @, the point (2, ) is reached when @ = & On the curve #I = deosh,
it is reached when @ = 0, where it is identified not by the coordinates (2, =), which do
i satisfy the equation, but by the coordinates [ —2, ), which do. Similarly, the cardioid
reaches the origin when & = 0, but the curve #* = 4 cos & reaches the origin when
B = w2, ]

r=1—cos @

-~
12, ® = i—L ) 10, ) = [I?. g]

FIGURE 10.47 The fouwr pivings of intersection of the
curves ¢ = | — cos @ and r® = 4 cos # {Example 5}
Oy A amd & were found by simullanecus solulson.
The other two werne disclosed by graphing.



Area and length in polar coordinates

Area of the Fan-5haped Region Between the Origin and the Curve
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This is the integral of the area differentlal (Figure 10.49)

R 1
= 5rid = 3 (@’ da.

EXAMPLE 1 Finding Area
Find the area of the region in the plane enclosed by the cardioid ¥ = 2(1 + cos 8).

Solution Wi graph the cardieid (Figure 10.30) and determine that the radius F

A, 81 awizeps out the region exactly once as 8 runs from 0 to 22 . The area is therefore
Hedm =y
f -rlda=f Al + cos#)F i
Be=i} z [} z
X I
= f 21 + 2cosd + cos” &) 49
[
FIGURE 10.49 The arca differential a4 Tor 1+ 2
fiar the curve n = f[{). =f (2+dmgﬂ+2Tm)dﬂ
i
I
= f (3 + dcosd + cos 20) d8
1
sin 28 |7
Y =i +omm =[3ﬂ+4si.r.ﬂ+ 5 ]ﬁ = G — 0 = fr. n

EXAMPLE 2 Finding Area
Find the area inside the smaller loop of the limagon

r=2cosfd + I.

Solution  After skeiching the curve (Figure 10.51), we see that the smaller loop is
traced out by the point (#, #) as @ increases from @ = 27/3 to 8 = 4w/ 3. Since the curve
is symmetric about the r-axis (the equation is unaltered when we replace 8 by —8), we may
caleulate the area of the shaded half of the inner boop by integrating from 8 = 273 fo
Examngile 1. i = 1. The area we seck will be twice the resulting integral:

,4=2f Leae= | raw.
lrr_l'.i2 1x/1

FIGURE 10.50 The cardioid in



FIGURE 10,51 The lmagon in Example 2.
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FIGURE 10.52 The ane of the shaded
region is calculated by sublracting the area
af the negion between ry anid the omgin
trom the anea of the region between r; and
the arigin.
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Lovwer limit
d4=_m2

FIGURE 10,53  The region and Limits of
integration in Example 3.
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Since
¢ =(2cosd + 1F = deos” & + dcosd + |

1+ ops 28
2

=2+ 2coos28 + doosi + |
=3+ 2ooa2f + dcosd,

=4- + 4eoaft + 1
wiz have

A= f (3 + 2cos2@ + 4cosf)dd
1z

Eg

[Jﬁl + §in 2@ + 4si|1|‘il]
a3

(3a) — (21 -

~ 13
=T — 7 | |

To find the area of a region like the one in Figure 10.52, which lies between two polar
curves # = r(f) and #2 = F(f) from @ = & o @ = B, we subtract the imegral of
{1/2)¢® i from the integral of (1 20 &8 . This leads to the following formula.

Area of the Reglon 0 = r(#) = r = r,(8), a=8=8
[ B [
_ | [T lroa_ 2
A-Iir!da .L-Er,dﬂ—l:i[rz i) dé (1)

Finding Area Between Polar Curves

EXAMPLE 3
Find the area of the region that lies inside the circle # = 1| and outside the cardioid
r=1—coa#.

Solution Wi sketch the region to determine its boundaries and find the limits of inte-
gration (Figure 10.53). The outer curve is ry = 1, the inner curve isrp = | — cos f#, and &
runs from —w&/2 to &/ 2. The area, from Equation (1), is
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FIGURE 10.54 Cakeulating the kength
of a cardioid {Example 4}.

I

Length of a Polar Curve

Wi can obtain a polar coordinate formula for the length of a curve r = filf), o = & = 5,
by parametrizing the curve as

o=@ = g {2

x = rcosfl = fl#) cos @, ¥ =rainf = f(#lsind,

The parametric length formula, Equation (1) from Section 6.3, then gives the length as

B
_ ﬂidxj} Edyj’
A | ia‘rj'
L—lﬁuﬂ‘ + ﬁ 7

when Equations (2) are substituted for x and v (Exercise 33).

This equation becomes

Length af a Palar Curve
If ¥ = fif) has a continsous first derivative for & = @ = B and if the point
Pir, 8) traces the curve r = f(#) exactly once as # runs from e to B, then the

length of the curve is
By eyt
L= I ..Ii,'rr- + (ﬁf) df. (2

EXAMPLE 4  Finding the Length of a Cardioid
Find the length of the cardioid » = 1 — cos f.

Solution Wie sketch the cardioid to determine the limits of integration (Figure 10.54).
The point Pr, #) traces the curve once, counterclockwise as & runs from 0 to 21, so these

are the values we take for o and 8.

With
r=1—cosf, %=5i.nﬂ,
wi have
2
2 4 (Y 2 (1 = coeBl + (sind)?
r+(a‘ﬁl) (1 — cosd)y + (sind)
=1-2cosf +cos’f + sin’f =2 — 2eosd
and
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