

ONE DIMENSIONAL ARRAY

• One dimensional array is a list of number arranged in a row or a column.

• To create a one dimensional:

Variable_name = [x1 x2 x3 x4 xn]

• EXAMPLE:

>> x = [1 2 3 4 5 6 7]x = 1 2 3 4 5 6 7

ONE DIMENSIONAL ARRAY

• A vector with n elements that are linearly (equally) spaced in which the first element is x_i and the last element x_n can be created using *linspace* command as follow:

 $Variable_Name = linspace(x_i, x_n, m)$

> m = linspace(1,4,5)

 $m = 1.0000 \quad 1.7500 \quad 2.5000 \quad 3.2500 \quad 4.0000$

TWO DIN	VIET	27	ΤΛ	NAL ARRAY
	t die sind die			atara aratatar
 A two dimensio array from the f 	nal ar fact th	ray at it	is kı has	nown also as a MATRIX. Matrix differ from one-dimensional numbers of rows and columns.
• Matrix can be c	reate	d as	follo	ow:
• <u>EXAMPLE:</u> >> m =	F 1 2 3	3:46	8:3	3 9 51
	L	·,	, .]
	m =	1	2	3
1			^	Q
1		4	6	0

TWO DIMENSIONAL ARRAY

• Another method to write the matrix:

```
>> m = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
m = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
```

ZERO, ONE AND	EY	EM	[AT]	RIX		
 To create a matrix with elem 	ients al	l are eo	qual to	ZERO,	we use:	
ĩ	<i>'</i> ariable	_name	= zero	s(xl,n)		
• EXAMPLE:						
>> x = zeros	(4,5)					
x =	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	

ZERO, ONE AND EYE MATRIX

• To create a matrix with elements all are equal to ONE, we use:

Variable_name = ones(x1,n)

• EXAMPLE:

>> x = ones(4,5)

THE TRANSPORT OPERATOR

```
• EXAMPLE:
• EXAMPLE:
                                 >> x = [1 2 3; 4 5 6; 7 8 9]
                                       x = 1 2 3
>> x = [3 8 5]
     x = 3 8 5
                                           4 5 6
                                           7 8 9
>> y = x'
                                 >> y = x'
      y =
            3
                                       y = 1 4 7
            8
                                           2 5 8
                                           3 6 9
            5
```

ADDRESSING A ARRAY

 We can addressing any element of a defined vector using: Variable_Name (element we would like to address)

If we would like to change an element (or elements) in any vector, we follow:
 Variable_Name (element to be changed) = New element

For a Matrix:

Variable_Name (row number, column number) Variable_Name (row number, column number) = New element

ADDRESSING AN ARRAY

EXAMPLE:

>> A = [33 65 88 12 90 41 47 83] A = 33 65 88 12 90 41 47 83 >> A(5) 90 % The 5^{th} element of the vector ans = >> A(3) = 244 % Changing the 3rd element of a vector A with 244 A = 33 244 12 90 41 47 83 65

ADDRESSING AN ARRAY

• EXAMPLE:

>>	M = [1 13 5	5 23;	33 91	16 75;	11 28 44 37]
	M =	1	13	55	23
		33	91	16	75
		11	28	44	37
>>	M(3,2)				
	ans =	28			
>>	M(3,3) = 97				
	M =	1	13	55	23
		33	91	16	75
		11	28	97	37

ADDRESSING OF ARRAY

- va(:) Refers to all the elements of the vector va (either a row or a column vector).
- A(:,n) Refers to the elements in all the rows of column *n* of the matrix *A*.
- A(n,:) Refers to the elements in all the columns of row *n* of the matrix *A*.
- A(:,m:n) Refers to the elements in all the rows between columns m and n of the matrix A.
- A(m:n,:) Refers to the elements in all the columns between rows m and n of the matrix A.
- A(m:n,p:q) Refers to the elements in rows m through n and columns p through q of the matrix A.

ADDRESSING OF ARRAY

• EXAMPLES:

>>V = [1:3:15]

V = 1 4 7 10 13

>> U = V(2:5) %Create a new vector (U) with elements taken from vector (V)

U = 4 7 10 13

FUNCTION DEALING WITH ARRAYS

Function	Description	Example	Function	Description	Example
length(A)	Returns the number of elements in the vector A.	>> A=[5 9 2 4]; >> length(A) ans = 4	diag(v)	When v is a vector, creates a square matrix with the elements of v in the diagonal.	>> v=[7 4 2]; >> A=diag(v) A =
size (A) Returns a row vector $[m, n]$, where m and n are the size $m \times n$ of the array A.	>> A=[6 1 4 0 12; 5 19 6 8 2] A = 6 1 4 0 12			7 0 0 0 4 0 0 0 2	
		5 19 6 8 2 >> size(A) ans = 2 5	diag(A)	When A is a matrix, creates a vector from the diagonal elements of A.	>> A=[1 2 3; 4 5 6; 7 8 9] A =
reshape(A, m,n) Creates a m by n matrix from the elements of matrix A. The elements are taken column after column. Matrix A must have m times n elements.	>> $A = [5 \ 1 \ 6; \ 8 \ 0 \ 2]$ $A = 5 \ 1 \ 6$ $B \ 0 \ 2$ >> $B = reshape(A, 3, 2)$			4 5 6 7 8 9 >> vec=diag(A)	
	B = 5 0 8 6 1 2			1 5 9	