
   

Spherical Aberration
An “on-axis” aberration  which 
arises from different radial 
zones on a optic producing a 
focus at different distances.

By its geometrical definition, a 
parabola is free of spherical 
aberration (but guilty of 
others).



   

 Classical aberrations of optical systems can be traced 
to the behavior of the third order term in the 
expansion in a raytrace. 
 

 These 5 classical aberrations -- spherical, coma, 
astigmatism, distortion, and field curvature were 
enumerated by von Seidel and bear his name.

Quantifying Aberrations

The paraxial approximation applies for cases where rays 
intersect optics at small angle, , so that sin  = .

For larger angles, a more exact approximation yields

sin  =  −
3

3 !


5

5!
...



   

Quantifying Aberrations – Defining Surfaces

Actual calculation of ray paths requires the mathematical 
definition of a surface.

Spheres are easy...
In two dimensions

y2  z2 = R2 z2 − 2 z R  y2 = 0

More general conic sections are expressed by

K is the conic constant ( 0=circle, 1=parabola, >1=hyperbola, 
0-1 = ellipse) 

1−e2z2 − 2 z R  y2 = 0 e2 =
a2−b2

a2
= −K



   

Quantifying Aberrations – Defining Surfaces
Solving the quadratic parameterizes z as a function of y – the 
shape of the surface as a function of ray height

which can be binomial expanded to

if P=1 this is the (messy) definition of a sphere

deviations from spherical shape can be defined in terms of P 
(conics) or in terms of multipliers of the higher order even 
terms in y (aspheric coefficients).

1−e2z2 − 2 z R  y2 = 0

z =
R
P

[1−1 − P 
y
R


2

] P=1−e2

z ≈
y2
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 The simplest surface to 
describe and manufacture 
is a sphere.

 Significant control of 
aberrations can be 
obtained by modifying 
spherical surfaces.

 Nearly perfect systems 
may be prescribed by 
using aspheres but they 
may be impossible to 
manufacture.

 The most common 
aspheres are conics 
(parabolas, hyperbolas 
and ellipses)

Conic Sections



   

General Third Order Aberrations

Herter and Stacey, Cornell University
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 Spherical aberration can be 
quantified in three ways.

Transverse spherical 
aberration -- the ray height of 
the most offensive ray at the 
paraxial focal plane

Longitudinal spherical 
aberration -- the separation 
between ''worst'' and paraxial 
focus on the optical axis

The diameter of the circle of 
least confusion – possibly of 
greatest interest to an 
observer.

Spherical Aberration



   

 Transverse SA is measured in 
terms of the most deviant ray 
height at the paraxial focus.

 The equation gives the TSA for a  
mirror of radius, R, with conic 
constant, K, as a function of ray 
height, y, from the optical axis.

Transverse Spherical Aberration

TSA = −1K 
y3

2R 2
− 31K 3K 

y5

8R4



   

Recognizing Spherical Aberration



   

Recognizing Spherical Aberration



   

 The power of optical design is illustrated by the control of spherical 
aberration provided by altering lens shape (a.k.a. “bending”).  

All of the illustrated lenses have the same focal length.

Optical Design and Spherical Aberration 
Mitigation



   

Coma
Coma arises when incident rays are not parallel to the optical 
axis/normal.

Like spherical aberration, coma is manifested by different radial zones in 
the optic

Unlike spherical aberration, the images produced by the zones are in 
sharp focus at the paraxial focal plane.

Each pair of symmetric points in each radial zone produces a sharp 
image, but since the lateral magnification is different for each pair 
each ring of incident rays forms an offset ring producing the classic 
“comma” image.



   

Coma



   

Coma in Practice
 



   

Optimizing for Coma via Bending
In a simple lens spherical aberration and coma cannot be 
minimized simultaneously (but close)

The optimal shape is close to plano-convex

but not that this is different from convex-plano ...  direction matters!



   

Astigmatism
Coma was described in terms of 
zonal/axial symmetry

Astigmatism addresses the 
broken symmetry introduced 
from the off-axis perspective

The optical axis and “chief ray” 
define a plane – the tangential 
plane.

Ray fans in and parallel to  this 
plane behave differently than ray 
fans lying in and parallel to the 
perpendicular “sagittal” plane

In particular, the two planes focus 
at different distances producing 
sharp perpendicular “line” images 
at two depths with a circle of least 
confusion in between.

http://www.microscopyu.com/tutorials/java/aberrations/astigmatism/index.html
http://www.vanwalree.com/optics/astigmatism.html

http://www.microscopyu.com/tutorials/java/aberrations/astigmatism/index.html
http://www.vanwalree.com/optics/astigmatism.html
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introduced from the off-axis perspective

The optical axis and “chief ray” define a plane – the 
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http://www.vanwalree.com/optics/astigmatism.html


   

Astigmatism

Astigmatism (like coma and SA) is signed. 
Combining under and over corrected elements can 
lead to (imperfect) cancellation of the aberration.

The goal in this cancellation is making the sagittal 
and tangential planes coincident.



   

Curvature of Field and Distortion



   

Field Flattening
Curvature of field can be corrected by adding an element 
directly ahead of the focal plane which serves to introduce a 
“delay” in focus as a function of distance from the optical axis.

Little additional aberration can be introduced since each point 
source “beam” sees a locally flat optic.



   

 A lens' focal length depends on 
the refractive index of the lens 
material.

 Refractive index (both 
fortunately and unfortunately) is 
a function of wavelength.

Only one wavelength can be 
exactly in focus at a time.

 Imaging systems often function 
over broad bandpasses (e.g. K-
band spans 2.0 – 2.4 um)

 Optical design mixes materials 
(e.g. crown and flint glass in a 
traditional achromat) to mitigate 
chromatic aberration.

 All-reflective optical systems 
cannot suffer chromatic aberration.

Chromatic Aberration



   




Chromatic Aberration
The lensmaker's equation quantifies the difference in 
focus as a function of wavelength.

Longitudinal chromatic aberration depends strongly on 
the dispersion of the material   dn/d



   

 Split the lens into two components (use additional surfaces to 
control classical aberrations).

 Make lenses out of materials with different dispersive properties

Standard doublet
Abbe formula
Spherical (fig 6.3)

 The Negative lens has a higher refractive index to control spherical 
aberration (compensating for its weaker power).

Zero spherical aberration can be achieved at only one color.  The 
same is true of chromatic aberration.
The doublet is far from perfect and some are more perfect than 
others.

Controlling Chromatic Aberration
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 The uncorrected chromatic aberration in a double achromat is 
called “secondary spectrum”.

It can be minimized by appropriate material choices which 

maximize the difference in Abee number (inverse of broadband 
dispersion) between the two materials

minimize the difference in partial dispersion (curvature of the 
dispersion vs. wavelength)

Standard doublet
Abbe formula
Spherical (fig 6.3)

Controlling Chromatic Aberration

Abee Number



   

Refractive Indices and 
Dispersions



   

 The uncorrected 
chromatic aberration in a 
double achromat is called 
“secondary spectrum”.

It can be minimized by 
appropriate material 
choices which 

maximize the 
difference in Abee 
number (inverse of 
broadband dispersion) 
between the two 
materials

minimize the 
difference in partial 
dispersion (curvature 
of the dispersion vs. 
wavelength)
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Controlling Chromatic Aberration

The spot diagrams at right represent 
three different achromatic doublet 
objectives of varying quality.  Today's 
Cadillac of refractors contain a fluorite 
element ($$$).

Note that optics designed for
the human eye have only weak
chromatic constraints.



   

Chromatic Aberration  Correction



   

Classical Optical Design

With raytracing/computers as a tool, a designer can 
leverage the many degrees of freedom in a system to 
minimize image aberration.

Degrees of freedom include:

Optical Materials Reflective vs. Refractive
Number of surfaces/lenses Curvature of surfaces
Lens thickness Lens Separation

Stops (although not usually in Astronomy)
Tilts

Custom Surfaces (aspheres)

Oslo Reference Manual

Oslo Downloads

Oslo Home

http://www-lit.lambdares.com/pub/Optics_Reference.pdf
http://www.lambdares.com/downloads/index.phtml
http://www.lambdares.com/products/oslo/index.phtml

