Spherical Aberration

s An “on-axis” aberration which
arises from different radial
zones on a optic producing a
focus at different distances.

» By its geometrical definition, a SPHERICAL ABERRATION
parabola is free of spherical AS SHOWN, A POSITIVE LENS 18
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F1g. G6K. Spherical aberration of a concave spherieal mirror,



Quantifying Aberrations

» The paraxial approximation applies for cases where rays
Intersect optics at small angle, 0, so thatsin 6 = 0.

» For larger angles, a more exact approximation yields

» Classical aberrations of optical systems can be traced
to the behavior of the third order term in the
expansion in a raytrace.

» These 5 classical aberrations -- spherical, coma,
astigmatism, distortion, and field curvature were
enumerated by von Seidel and bear his name.



Quantifying Aberrations — Defining Surfaces

s Actual calculation of ray paths requires the mathematical
definition of a surface.

> Spheres are easy... K\ 7/\
» |n two dimensions Kj U

Y+ 7 =R 22— 2zR + ¥y =0

*» More general conic sections are expressed by

(1—62)Z2 — 27zR + y2 =0 e = 5 = —K

» K is the conic constant ( O=circle, 1=parabola, >1=hyperbola,
0-1 = ellipse)



Quantifying Aberrations — Defining Surfaces

» Solving the quadratic parameterizes z as a function of y — the
shape of the surface as a function of ray height

(1—62)Z2 — 2R + yz -0 f”\ %/—\
t= 5 [1_\/1 - P )2 ] P=(1-¢’) Kj U
P

» which can be binomial expanded to

> <

+ ..

2 4 2 6 3 8
Yy Py3+Py5+5Py7
2R S8R 16 R 128 R

» |f P=1 this is the (messy) definition of a sphere

» deviations from spherical shape can be defined in terms of P
(conics) or in terms of multipliers of the higher order even

terms in y (aspheric coefficients).



Conic Sections

* The simplest surface to
describe and manufacture
Is a sphere.

» Significant control of
aberrations can be
obtained by modifying
spherical surfaces.

» Nearly perfect systems
may be prescribed by
using aspheres but they
may be impossible to
manufacture.

» The most common
aspheres are conics
(parabolas, hyperbolas
and ellipses)
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Fig. 20.1 Conic Sections.




General Third Order Aberrations

Expanding beyond the linear approximation give the third-
order Seidel aberration terms. The angular aberrations are:

y v 27, v .
AA=a ~—+a, L A 2 +a,—+a,0
R R : R R
T astigmatism L T— distortion
coma
field curvature

spherical aberration

AA = angular aberration (e.g. arcsec or radians)

a, = constants
R = radius of curvature
y = height of ray Taking R = f,y then:

- . ~ ~ . 2
¢ = angle of incidence of rays from object Al = o e P e i
max f}. « fl a f e ‘f d

f A
Herter and Stacey, Cornell University coIna astigmatism | distortion
field curvature
spherical aberration
AA, =AAfory=y, =D Note: the “faster” the
i = f-number optical system, the

D = aperture diameter greater the aberrations!
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Spherical Aberration

* Spherical aberration can be
quantified in three ways.

» Transverse spherical S
aberration -- the ray height of b ‘ ’ :
the most offensive ray at the

paraxial focal plane o+ .
» Longitudinal spherical £ 8
aberration -- the separation o .
between "worst" and paraxial ‘ 1
focus on the optical axis
MB — (c) .'1‘ <= p
» The diameter of the circle of
least confusion — possibly of ARAXAL @ .
. - 4 7 P
greatest interest to an Foaus IRNME
observer.

Fig. 7.6 Spherical Aberration: meridional plane (top); spot diagrams (center); ray fan plots (bottom).
Reprinted with permission from Rutten and van Venrooij, Telescope Optics (Willmann-Bell, 1988),
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Transverse Spherical Aberration

* Transverse SA is measured in p
terms of the most deviant ray e
height at the paraxial focus. |
_ _ B TSA
» The equation gives the TSA for a | i :
mirror of radius, R, with conic ‘ - i
constant, K, as a function of ray N o \__l|\
height, y, from the optical axis. -
Astronomical Optics (Schroeder) i 3 5
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Fig. 4.5. Ray distribution near paraxial focus for image with spherical aberration. Paraxial
focus is at (0, 0). See Eq. (4.2.8) for definition of parameters.



Recognizing Spherical Aberration

Focal Planes with Spherical Aberration

Towards the Lens
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Recognizing Spherical Aberration

HUBBLE SPACE TELESCOPE
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Optical Design and Spherical Aberration
Mitigation
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FIG. 3.10 Change of spherical aberration with change of lens shape (lens bending) for a
germanium lens with index NV = 4. Minimum spherical aberration is obtained in this case when
the first radius of the lens is equal to its focal length and the second radius is 1.5 times the focal

length (K = 3).
Optical Design Fendamentals for Infrared Systems (Riedl)

* The power of optical design is illustrated by the control of spherical
aberration provided by altering lens shape (a.k.a. “bending”).

» All of the illustrated lenses have the same focal length.



Coma

» Coma arises when incident rays are not parallel to the optical
axis/normal.

@ Like spherical aberration, coma is manifested by different radial zones in
the optic

@ Unlike spherical aberration, the images produced by the zones are in
sharp focus at the paraxial focal plane.

» Each pair of symmetric points in each radial zone produces a sharp
image, but since the lateral magnification is different for each pair
each ring of incident rays forms an offset ring producing the classic
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Coma

SAGITTAL

% PIERCE

Fig. 7.8 Paraxial image of specific zones when coma is present.
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Fig. 7.7 Coma: meridional plane (top); spot diagrams (center); ray fan plats (bottom). Reprinted with
permission from Rutten and van Venrooif, Telescope Optics { Willmann-Bell, [988).
Introduction to Lens Design (Geary)



Coma in Practice

Telescope Optics (Rutten & van Venrooij)

Fig. 4.3 Spot Diagrams for a 200 mm f/8 Newtonian, 12.5 mm Off-axis.




Optimizing for Coma via Bending

» In a simple lens spherical aberration and coma cannot be
minimized simultaneously (but close)

@ The optimal shape is close to plano-convex
@ but not that this is different from convex-plano ... direction matters!

Telescope Optics (Rutten & van Venrooij)
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Fig. 6.2 Sphervical Aberration and Coma of a Simple Lens.




Astigmatism

Coma was described in terms of

i
zonal/axial symmetry .
: : )
» Astigmatism addresses the e
broken symmetry introduced /Sl
from the off-axis perspective i

» The optical axis and “chief ray”
define a plane - the tangential

plane.

@ Ray fans in and parallel to this |
plane behave differently than ray D ol
fans lying in and parallel to the T
perpendicular “sagittal” plane o

@ |n particular, the two planes focus ;\\H,
at different distances producing ~
sharp perpendicular “line” images @ ~—
at two depths with a circle of least S

confusion in between.

http://www.microscopyu.com/tutorials/java/aberrations/astigmatism/index.html
http://www.vanwalree.com/optics/astigmatism.htmi


http://www.microscopyu.com/tutorials/java/aberrations/astigmatism/index.html
http://www.vanwalree.com/optics/astigmatism.html

Astigmatism

» Coma was described in terms of zonal/axial

symmetry

» Astigmatism addresses the broken symmetry
Introduced from the off-axis perspective

» The optical

axis and “chief ray” define a plane - the

tangential plane.

@ Ray fans

in and parallel to this plane behave differently than

ray fans lying in and parallel to the perpendicular “sagittal”

plane

@ |n particular, the two planes focus at different distances
producing sharp perpendicular “line” images at two depths
with a circle of least confusion in between.

consor no astigmatism sagittal focus tangential focus

Qv
>

http://www.vanwalree.com/optics/astigmatism.html


http://www.vanwalree.com/optics/astigmatism.html

Astigmatism

» Astigmatism (like coma and SA) is signed.
Combining under and over corrected elements can
lead to (imperfect) cancellation of the aberration.

@ The goal in this cancellation is making the sagqittal
and tangential planes coincident.




Curvature of Field and Distortion

Introduction to Lens Design (Geary)

PARAXIAL
FOCUS

Fig, 7.11 Meridional plot illustrating field curvature. Reprinted with permission from Rutten and van
Venrooij, Telescope Optics (Willmann-Bell, 1988).
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Fig. 7.12 Meridional plot illustrating distortion. Reprinted with permission from Rutten and van Ven-
reoij, Telescope Optics (Willmann-Bell, 1988).



Field Flattening

» Curvature of field can be corrected by adding an element
directly ahead of the focal plane which serves to introduce a
“delay” in focus as a function of distance from the optical axis.

» Little additional aberration can be introduced since each point
source “beam” sees a locally flat optic.

eary Infroduction to Lens Design
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kig 14.8 Focus shift introduced by a parallel plate in a converging beam. Fig 14.10 Idealistic field flattener.



Chromatic Aberration

* A lens' focal length depends on
the refractive index of the lens
material.

@ Refractive index (both

fortunately and unfortunately) is

a function of wavelength.

@ Only one wavelength can be
exactly in focus at a time.

» Imaging systems often function
over broad bandpasses (e.g. K-
band spans 2.0 - 2.4 um)

» Optical design mixes materials
(e.g. crown and flint glass in a
traditional achromat) to mitigate
chromatic aberration.

» All-reflective optical systems
cannot suffer chromatic aberration.
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Fig. 16.1 Dispersion in a lens.
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Chromatic Aberration

*» The lensmaker's equation quantifies the difference in
focus as a function of wavelength.

» Longitudinal chromatic aberration depends strongly on
the dispersion of the material dn/dA
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Telescope Optics (Rutten & van Venrooij)

Fig. 21.12 Longitudinal Chromatic Aberration for a Simple Lens.



Controlling Chromatic Aberration

* Split the lens into two components (use additional surfaces to
control classical aberrations).

» Make lenses out of materials with different dispersive properties

» The Negative lens has a higher refractive index to control spherical
aberration (compensating for its weaker power).

@ Zero spherical aberration can be achieved at only one color. The
same is true of chromatic aberration.

» The doublet is far from perfect and some are more perfect than
others.

Cerﬁé;ted Fraﬁnhﬁf er Sf;einheil

Fig. 6.5 Achromatic Doublet Designs.



Controlling Chromatic Aberration

* Split the lens into two components (use additional surfaces to
control classical aberrations).

» Make lenses out of materials with different dispersive properties

» The Negative lens has a higher refractive index to control spherical
aberration (compensating for its weaker power).

@ Zero spherical aberration can be achieved at only one color. The
same is true of chromatic aberration.

» The doublet is far from perfect and some are more perfect than
others.

Telescope Optics (Rutten & van Venrooij)
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Fig. 6.3 Correction of Longitudinal Spherical Aberration (LA) in Doublet Objective.



Controlling Chromatic Aberration

* The uncorrected chromatic aberration in a double achromat is
called “secondary spectrum”.

» |t can be minimized by appropriate material choices which

» maximize the difference in Abee number (inverse of broadband
dispersion) between the two materials

» minimize the difference in partial dispersion (curvature of the
dispersion vs. wavelength)

Telescope Optics (Rutten & van Venrooij)
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Fig. 6.6 Color Curve for a Normal Visually Corrected Doublet.
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Controlling Chromatic Aberration

* The uncorrected
chromatic aberration in a
double achromat is called
“secondary spectrum”.

» |t can be minimized by
appropriate material
choices which

» maximize the
difference in Abee
number (inverse of
broadband dispersion)
between the two
materials

» minimize the
difference in partial
dispersion (curvature
of the dispersion vs.
wavelength)
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Controlling Chromatic Aberration

* The uncorrected
chromatic aberration in a
double achromat is called
“secondary spectrum”.

» |t can be minimized by
appropriate material
choices which

» maximize the
difference in Abee
number (inverse of
broadband dispersion)
between the two
materials

» minimize the
difference in partial
dispersion (curvature
of the dispersion vs.
wavelength)
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Fig. 18.2 Partial dispersion plot for BK7 and SF2.



Controlling Chromatic Aberration

* The uncorrected

chromatic aberration in a
double achromat is called 198 Chapter 18 Secondary Color
“secondary spectrum”.
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of the dispersion vs.
wavelength)



Controlling Chromatic Aberration

* The uncorrected
chromatic aberration in a

Ceary Infroduction to Lens Design
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Controlling Chromatic Aberration

The spot diagrams at right represent
three different achromatic doublet
objectives of varying quality. Today's
Cadillac of refractors contain a fluorite
element ($$9%).

Note that optics designed for
the human eye have only weak
chromatic constraints.
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Chromatic Aberration Correction

Introduction to Lens Design (Geary)
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Classical Optical Design

» With raytracing/computers as a tool, a designer can
leverage the many degrees of freedom in a system to
minimize image aberration.

» Degrees of freedom include:

Optical Materials Reflective vs. Refractive
Number of surfaces/lenses Curvature of surfaces
Lens thickness Lens Separation

Custom Surfaces (aspheres)

Stops (although not usually in Astronomy)
Tilts

Oslo Reference Manual
Oslo Downloads

Oslo Home


http://www-lit.lambdares.com/pub/Optics_Reference.pdf
http://www.lambdares.com/downloads/index.phtml
http://www.lambdares.com/products/oslo/index.phtml

