Lect -6 . Matrix Methods

In the beginning of the 1930s, T. Smith formulated an interesting way of handling the ray-tracing equations.
The simple linear form of the expressions and the repetitive manner in which they are applied suggested the
use of matrices. The processes of refraction and transfer might then be performed mathematically by matrix
operators. These initial insights were not widely appreciated for almost 30 years. However, the early 1960s
saw a rebirth of interest in this approach. We shall only outline some of the salient features of the method,

leaving a more detailed study to the references.

Matrix Analysis of Lenses

Let's begin by writing the formulas
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We can write,
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and the power of the second surface is
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From Eq. (6.26)
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The system matrix . is then defined as
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and has the form

Inasmuch as



it follows that
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and again |&/| = 1 (Problem 6.17). Because we are working
with only one lens, let’s simplify the notation a little letting d5,
= d; and n,, = n;. Consequently,
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The value of each element in & is expressed in terms of the
physical lens parameters, such as thickness, index, and radii
(via 9). Thus the cardinal points, which are properties of the
lens determined solely by its makeup, should be deducible
from /. The system matrix in this case, Eq. (6.31), transforms
an incident ray at the first surface to an emerging ray at the
second surface; as a reminder, we will write it as /5.

The concept of image formation enters rather directly
(Fig. 6.8) after introduction of appropriate object and image
planes. Consequently, the first operator ', transfers the ref-
erence point from the object (i.e., Py to P;). The next operator
&/, then carries the ray through the lens, and a final transfer
T, brings it to the image plane (i.e., P;). Thus the ray at the
image point (%) is given by

4 =T AT o0%0 (6.32)




where 2 is the ray at Pg. In component form this is
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Notice that I 20 = #;; and that &5 ,2;; = 2,>, hence T4, =
#4;. The subscripts O, 1, 2, ..., I correspond to reference points
Po, Py, P, and so on, and subscripts { and ¢ denote the side of
the reference point (i.e., whether incident or transmitted).
Operation by a refraction matrix will change i to ¢ but not the
reference point designation. On the other hand, operation by a
transfer matrix obviously does change the latter.

Ordinarily, the physical significances of the components of
&/ are found by expanding out Eq. (6.33), but this is too
involved to do here. Instead, let’s return to Eq. (6.31) and
examine several of the terms. For example,
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If we suppose, for the sake of simplicity, that the lens is in air,
then
n— 1
9y = ! and @, =
R, —R;

as in Egs. (5.70) and (5.71). Hence
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But this is the expression for the focal length of a thick lens
[Eq. (6.2)]; in other words,

ap=—1/f (6.34)
Thus the power of the lens as a whole is given by
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If the embedding media were different on each side of the lens
(Fig. 6.9), this would become
i M

ap, = —fT: —7 (6.35)



£, Vi Hy  HiVs __‘%
. 4 -
|
| n, | ‘ | R,y
| |
SUEY A NS— A ——j
——— f, ——l —

Figure 6.9 Principal planes and focal lengths.

Similarly, it is left as a problem to verify that
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which locate the principal points.

As an example of how the technique can be used, let’s
apply it, at least in principle, to the Tessar lens* shown in
Fig. 6.10. The system matrix has the form

d?l = 979'76'%6'9’65@53‘54'@49'43339'32'@2%IQl

where
| 0 | 0
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1.6116 1
1 0
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Figure 6.10 A Tessar.

ind so forth. Furthermore,

1.6116 — 1 1—1.6116
1 1628 1 T T 757
R, = 1-6128 R, = 127.57
0 0
16053 — 1
R= 1 —3.157
0

and so on. Multiplying out the matrices, in what is obviously a
horrendous, though conceptually simple, calculation, one pre-
sumably will get

0.848 —0.198
1.338 0.867

71 =

and from that, f = 5.06, V\H, = 0.77, and V;H, = —0.67.



Thin Lenses

As a last point, it is often convenient to consider a system of thin lenses using the matrix representation. To
that end, return to Eq. (6.31). It describes the system matrix for a single lens, and if we let dl —> 0, it
corresponds to a thin lens. This is

equivalent to making J,, a unit matrix; thus
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But as we saw in Section 5.7.2, the power of a thin lens & is
the sum of the powers of its surfaces. Hence
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In addition, for two thin lenses separated by a distance d, in
air, the system matrix is

| = of|1 —1/A
Ja(_[o 1 Hd 1“0 1 }

I—Wﬁ-ﬂm+JMﬁ—IM]

o A = [ d —d/f, + 1

Clearly then,
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and from Eqgs. (6.36) and (6.37)

O\H, = fd/f  O,H, = —fd/f,

all of which should be quite familiar by now. Note how easy it
would be with this approach to find the focal length and prin-
cipal points for a compound lens composed of three, four, or

more thin lencec



Matrix Analysis of Mirrors

To derive the appropriate matrix for reflection, consult Fig. 6.11, which depicts a concave spherical mirror, and
write down two equations that describe the incident and reflected rays. Again, the final form of the matrix
depends on how we arrange these two equations and the signs we assign to the various quantities. What's
needed is an expression relating the ray angles and another relating their heights at the point of interaction

with the mirror.

First let’s consider the ray angles. The Law of Reflection

is 6; = 6,; therefore from the geometry tan (o; — 6;) = y;/R,
and

(a; — 6) = y;/R (6.38)



Figure 6.11 The geometry for reflec-
tion from a mirror. The ray angles «, and
a, are measured from the direction of
the optical axis.

Taking these angles to be positive, y is positive, but R isn’t,
and this equation will be in error as soon as we enter a nega-
tive value for the radius. Therefore rewrite it as (a; — 6,) =
—v;/R. Now to get «, into the analysis, note that o; = a, + 26,
and 6, = (a; — «,)/2. Substituting this into Eq. (6.38) yields

a, = —a; — 2y;/R, and multiplying by n, the index of the sur-
rounding medium (where usually n = 1), leads to
na, = —nw; — 2ny;/R
The second necessary equation is simply y, = y; and so
na, | | =1 —2n/R||na;
Yr 0 1 Yi
Thus the mirror matrix £ for a spherical configuration is giv-
en by
-1 —2n/R
My = n/ (6.39)
0 1

remembering from Eq. (5.49) that f = —2/R.

Fiat Mirrors and the Planar Optical Cavity

For a flat mirror (R — =) in air (n = 1), the matrix is

<[]



where the minus sign in the first position reverses the ray upon
reflection. Figure 6.12 shows two planar mirrors facing each
other forming an optical cavity (p. 591). Light leaves point O,
traverses the gap in the positive direction, is reflected by mir-
ror-1, retraces the gap in the negative direction, and is reflect-
ed by mirror-2. The system matrix is

A = J“rzgzl-/“ug'lz

RIS/

1 0
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where again the determinant of the system matrix is one: | /|
= . Presumably, if the initial ray was axial (o = 0), the sys-
tem matrix should bring it back to its starting point so that the
final ray 4,is identical to the initial ray 4;. That is,

;= 4= 4

This is a special kind of mathematical relationship known as
an eigenvalue equation where, a bit more generally,

.ﬂfh,- = a%;

and ¢ is a constant. In other words,
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If a; = 0 and the initial ray is launched axially, then y; = ay;

Figure 6.12 A schematic representation of a planar cavity formed by
mirrors M; and M.



and it follows that @ = |. The system matrix functions like a
unit matrix that carries 4; into 4; after two reflections. Axial
rays of light travel back and forth across the so-called reso-
nant cavity without escaping.

Cavities can be constructed in a number of different ways
using a variety of mirrors (Fig. 13.12, p. 594). If after travers-
ing a cavity some number of times the light ray returns to its
original location and orientation, the beam will be trapped and
the cavity is said to be stable; that’s why the eigenvalue dis-
cussion is important. To analyze the confocal cavity composed
of two concave spherical mirrors facing each other, see Prob-
lem 6.24.



