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FIRST LECTURE

1. Nature of light

During the seventeenth century two emission theories on the nature of light were developed.
the wave theory of Hooke and Huygens and the corpuscular theory of Newton. Subsequent
observations by Young, Maius, Euler and others lent support to the wave theory. Then in
1864 Maxwell combined the equations of electromagnetism in a general form and showed
that they suggest the existence of transverse electromagnetic waves. The speed of propa-
gation in free space of these waves was given by
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This is called the swave equation: it is encountered in many different kinds of physical phe-
nomena such as mechanical vibrations of a string or in a rod. The implication of eq. (1.3)
is that changes in the fields propagate through space with a speed ¢, the speed of light. The
frequency of oscillation of the fields. v. and their wavelength in vacuum, A,,. are related by

¢ =VA, (1.4)
In any other medium the speed of propugation is given by
¢ Ay
P=—=VAi=y — (1.5)
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where i 1s the refractive index of the medium and A is the wavelength in the medium (later
in the text we often drop the subscript from the vacuum wavelength A, to simplify the nota-
tion). ji is given by

1= N{l,E, (1.5a)

where u_and €, are the relative permeability and relative permittivity of the medium respec-
tively.

The electric and magnetic fields vibrate perpendicularly to one another and perpendicularly
to the direction of propagation as illustrated in Fig. 1.1: that is, light waves are transverse waves.
In describing optical phenomena we often omit the magnetic field vector. This simptifies dia-
grams and mathematical descriptions but we should always remember that there is also a mag-
netic field component which behaves in a similar way to the clectric field component.

The simplest waves are sinusoidal waves. which can be expressed mathematically by the
equation

o) =& cos(ot = ky + o) (1.6)
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FIG. 1.1 Lledtromagnetic wave: the olectric vector (8) and the magnetic vector (¥ vibrate in orthogonal
planes and perpendicularly to the direction of propagation.

where ¢ is the value of the electric field at the point x at time 1. €, is the amplitude of the
wave. wis the angular frequency (o =2nv), & is the wavenumber (k = 2n/A) and ¢ is the phase
constant, The term (of — kv + ¢ ) 1s the phase of the wave. Equation (1.6), which describes
a perfectly monochromatic plane wave of infinite extent propagating in the positive v direc-
tion, 1s @ solution of the wave equation (1.3),



We cun represent eq. (1.0) diagrammatically by plotting € as a function of either x or ¢
as shown in Figs 1.2(a) and (b), where we have taken € = ¢, at x and f equal to zero so that
¢ =0 Figure 1.2(a) shows the variation of the electric field with distance at a given instant
of ime. If, as a representative time, we take f equal to zero, then the spatial variation of the
clectric field is given by

{ = ¢, 008 Ay (1.6a)

Similarly Fig. 1.2(b) shows the variation of the electric field as a function of time at some

specific location in space. If we take v equal to zero then the temporal variation of electric
freld is given by

¢ =¢,c08 mt (1.6b)

Equations (1.6) can be written in a variety of equivalent forms using the relationships between
v. oA kand ¢ already given. We note also that the time for one cycle is the period T(7 = 1/v)
as shown m Fig. 1.2(b).

I the value of ¢ at v=0.1=01s not ¢, then we must include the arbitrary phase constant
¢. Equations (1.6) can also be expressed using a sine rather than a cosine function. or alter-
natively using complex exponentials.

In the plane waves described above and in other forms of wave there are surfaces of con-
stant phase, which are referred to as wave surfaces or wavefronts. As time elapses the wave-
fronts move through space with a velocity v given by

1=aw/k=vA (1.7)

which is called the phase velocity. As it is impossible in practice to produce perfectly mono-
chromatic waves we often have the situation where a group of waves of closely similar wave-
length is moving such that their resultant forms a packet. This packet moves with the group
velocity t'.- A discussion of this phenomenon based on the combination of two waves of

slightly different frequencies moving together, which is illustrated in Fig. 1.3, shows that
the group velocity is given by (see Problem 1.2)
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2. polarization

If the electric field vector of an electromagnetic wave propagating in free space vibrates in
a specific plane, the wave is said to be plane polarized. Any real beam of light comprises
many individual waves and in general the planes of vibration of their electric frelds will be
randomly orientated. Such a beam of light is unpolarized and the resultant electric field vector
changes orientation randomly in time. It is possible, however. to have light beams charue-
terized by highly orientated electric fields and such light is referred 1o as being polarized.

The simplest f01 m of polarization is plane polarized light, which is similar to the single wave
shown n FlL ) Othgr forms of polarization are discussed in scction 3.1,
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FIG. 1.5 In (a}, a light reflected from the interface between two media of refractive index n, and n, is
partially plane polarized {there is less of the parallel component 4+ than the perpendicular compovent
——>), while in {b) for incidence at the Brewster angle 8, the reflected light is completely plane polarized.






