• **Quantization of the angular momentum**

- The physical quantities that do not change during motion called the motion constants.
- $l = r \times P$ (6.21)
- But in quantum value

•
$$
l^2 = \ell(\ell+1)\hbar^2
$$
(6.22)

- Where $\ell = 0, 1, 2, 3, ..., n 1$
- \bullet ℓ : orbital quautum Number.

$$
n=1 \Longrightarrow \ell=0
$$

• for example if $n = 2 \implies \ell = 0.1$ $n = 3 \implies \ell = 0.1,2$

The selection rule of transition are:

$$
\Delta \ell = \pm 1
$$

$$
\Delta m_{\ell} = 0, \pm 1
$$

 m_{ℓ} : magnetic quantum number.

The transition occurs if the difference in (ℓ) between the two cases equals to $+1$.

Such as $2p \rightarrow 3d$ (transition)

The transition cannot happen from $2p \rightarrow 4p$ because of $\Delta \ell = 0$

• The transition is happed If $\Delta \ell = \pm 1$

•
$$
s \rightarrow p, p \rightarrow s, p \rightarrow d, d \rightarrow p, d \rightarrow f
$$

 $f \rightarrow d$

• The orbital angular momentum is quantized in its direction and called space quantized this means if we have magnetic field in Z direction.

 $\vec{\ell}$ as a vector conno't have any direction according to Z − direction but can be have specific directions where pr ojection of Z direction equal to integer.

- Let $\vec{\ell}_{z}$ = the projection of ℓ on Z axis (the direction of magnetic field).
- $m_{\ell} \ell$
- $\ell_z m_\ell$. ℓ
- $m_e = 0, \pm 1, \pm 2, \pm 3, ... \pm \ell m_e$: magnetic quantum number.
- $m_{\ell} = 2\ell + 1$
- The no value of $m_\ell = 2\ell + 1$

This figure show, for one valve of $\ell \Rightarrow 2\ell + 1$ (directions for $\vec{\ell}$ and 2 ℓ tl values of $m\ell$ 2 ℓ tl called g basic or principle degererate for orbital angular momentum state. $a = 2l+l$

$$
g = 1 when \t l = 0 \xrightarrow{called} s - state
$$

\n
$$
g = 3 when \t l = 1 \xrightarrow{called} p - state
$$

\n
$$
g = 5 when \t l = 2 \xrightarrow{called} d - state
$$

\n
$$
\ell
$$
 have three components ℓ_x , ℓ_y and ℓ_z but the theoretical
\nanalysis leads to determine one component ℓ_z and ℓ_x , ℓ_y
\nuncertainty determined

$$
\Delta \ell_x, \Delta \ell_y \ge \frac{1}{2} \hbar \ell_z
$$

Then can be determine $\overline{|\ell|}$ and ℓ_z and can be imagine the orbital angular momentum \vec{l} as a vector around Z: axis in specific angle (θ)

Hydrogen atom and similar atoms

Atoms with one electron

These atoms such as hydrogen, heliumlon, electron $H, He⁺, li⁺⁺$ or $Be⁺³$ ${}^{1}_{1}H_{0}$ = is a simplest atom in the nature which have one proton and one electron. ${}^{2}_{1}H_{1}$ = deuterium, proton, neutron (nuclei)

The energy levels of H-atom

$$
E_p = -\frac{ze^2}{4\pi\epsilon\sigma r} \dots (7.2) - \frac{\hbar^2}{2m} \left(\frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dy^2} + \frac{d^2\psi}{dz^2} \right) - \frac{ze^2}{4\pi\epsilon\sigma r} \psi = E\psi \dots (7.3)
$$

The energy levels of H- atom and for atoms like H can be get from equation (7.3) which close to Bohr results (by classical mechanic) as follows.

$$
E_{n=-\frac{m_{e}e^{4}z^{2}}{8\ 6^{2}h^{2}n^{2}}} = -\frac{13.6z^{2}}{n^{2}}(ev)
$$
........(7.4)
n= 1,2,3... (basic quantum No.)

The total energy is negative quaintly \equiv (attractive **force between electron and nucleus). The energy values are quantized values.**

The wave function of H-atom and similar atoms

$$
-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2}+\frac{\partial^2\psi}{\partial y^2}+\frac{\partial^2\psi}{\partial z^2}\right)-\frac{ze^2}{4\pi\epsilon_0r}\psi=E\psi
$$
(7.7)