Quantization of the angular momentum

- The physical quantities that do not change during motion called the motion constants.
- $\ell = r \times P$ (6.21)
- But in quantum value
- $l^2 = \ell(\ell + 1)\hbar^2$ (6.22)
- Where $\ell = 0, 1, 2, 3, ..., n 1$
- *l*:orbital quautum Number.

$$n=1 \Longrightarrow \ell = 0$$

• for example if $n = 2 \Longrightarrow \ell = 0,1$ $n = 3 \Longrightarrow \ell = 0,1,2$

<u>n</u>	<u>ℓ</u>			
1	0			
	0	1		
2	S	Ρ		
	0	1	2	
3	S	Ρ	d	
	0	1	2	3
4	S	р	d	f

The selection rule of transition are:

$$\Delta \ell = \pm 1 \\ \Delta m_{\ell} = 0, \pm 1$$

 m_ℓ : magnetic quantum number.

The transition occurs if the difference in (ℓ) between the two cases equals to ± 1 .

Such as $2p \rightarrow 3d$ (transition)

The transition cannot happen from $2p \rightarrow 4p$ because of $\Delta \ell = 0$

No transition from	$egin{array}{c} s o s \ p o p \ d o d \end{array} = \Delta \ell = 0$
No transition from	$ \begin{cases} s \to d \\ d \to s \\ p \to f \\ f \to p \end{cases} \Delta \ell = \pm 2 $
No transition from	$\begin{cases} s \to f \\ f \to s \end{cases} \Delta \ell = \pm 3$

• The transition is happed If $\Delta \ell = \pm 1$

•
$$s \rightarrow p, p \rightarrow s, p \rightarrow d, d \rightarrow p, d \rightarrow f$$

 $f \rightarrow d$

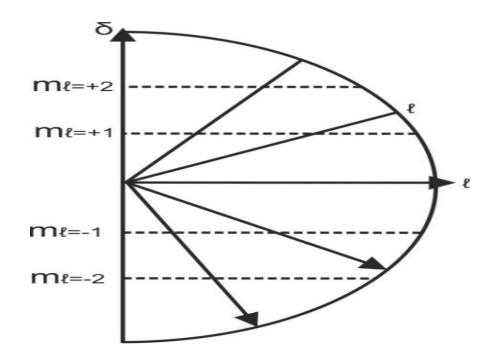
n	E	$\ell = 0$	$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$
5	E_5	5 <i>S</i>	5 <i>P</i>	5 <i>d</i>	5 <i>F</i>	5 <i>g</i>
4	E_4	4 <i>S</i>	4 <i>P</i>	4 <i>d</i>	4F	
3	E_3	3 <i>S</i>	3 <i>P</i>	3 <i>d</i>		
2	E_2	2 <i>S</i>	2 <i>P</i>			
1	E_1	1 <i>S</i>				

• The orbital angular momentum is quantized in its direction and called space quantized this means if we have magnetic field in Z direction.

 $\vec{\ell}$ as a vector conno't have any direction according to Z - direction but can be have specific directions where pr ojection of Z direction equal to integer.

- Let $\vec{\ell}_z$ = the projection of ℓ on Z axis (the direction of magnetic field).
- $m_{\ell} \ell$
- $\ell_z m_\ell . \ell$
- $m_e = 0, \pm 1, \pm 2, \pm 3, \dots \pm \ell m_e$: magnetic quantum number.
- $m_\ell = 2\ell + 1$
- The no value of $m_\ell = 2\ell + 1$

n	ł	$m\ell=2\ell+1$	Value of $m\ell$
1	0	1	0
2	0,1	3	-1,0,+1
3	0,1,2	5	-2,-1,0,+1,+2
4	0,1,2,3	7	-3,-2,-1,0,+1,+2,+3



This figure show, for one value of $\ell \implies 2\ell + 1$ (directions for $\vec{\ell}$ and $2\ell tl$ values of $m\ell 2\ell tl$ called g basic or principle degererate for orbital angular momentum state.

$$g = 2\ell tl$$

$$g = 1 \text{ when } \ell = 0 \xrightarrow{called}{\Longrightarrow} s - state$$

$$g = 3 \text{ when } \ell = 1 \xrightarrow{called}{\Longrightarrow} p - state$$

$$g = 5 \text{ when } \ell = 2 \xrightarrow{called}{\Longrightarrow} d - state$$

$$\ell \text{ have three components } \ell_x, \ell_y \text{ and } \ell_z \text{ but the theoretical}$$

analysis leads to determine one component $\ell_z \text{ and } \ell_x, \ell_y$
uncertainty determined

$$\Delta \ell_x. \Delta \ell_y \geq \frac{1}{2} \hbar \ell_z$$

Then can be determine $\overline{|\ell|}$ and ℓ_z and can be imagine the orbital angular momentum $\vec{\ell}$ as a vector around Z: axis in specific angle (θ)

 ℓ_{v}

Hydrogen atom and similar atoms

Atoms with one electron

These atoms such as hydrogen, heliumlon, electron H, He⁺, li⁺⁺ or Be⁺³ ${}_{1}^{1}H_{0} =$ is a simplest atom in the nature which have one proton and one electron. ${}_{1}^{2}H_{1} =$ deuterium, proton, neutron (nuclei)

The energy levels of H-atom

$$E_p = -\frac{ze^2}{4\pi\epsilon or}\dots(7.2)$$

$$-\frac{\hbar^2}{2m}\left(\frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dy^2} + \frac{d^2\psi}{dz^2}\right) - \frac{ze^2}{4\pi\epsilon or}\psi = E\psi\dots(7.3)$$

The energy levels of H- atom and for atoms like H can be get from equation (7.3) which close to Bohr results (by classical mechanic) as follows.

$$E_{n=-\frac{m_e e^4 z^2}{8 6^2 h^2 n^2} = -\frac{13.6 z^2}{n^2} (ev)....(7.4)$$

n= 1,2,3... (basic quantum No.)

The total energy is negative quaintly \equiv (attractive force between electron and nucleus). The energy values are quantized values.

The wave function of H-atom and similar atoms

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2}+\frac{\partial^2\psi}{\partial y^2}+\frac{\partial^2\psi}{\partial z^2}\right)-\frac{ze^2}{4\pi\epsilon_0 r}\psi=E\psi\quad....(7.7)$$