
The origin of Schrodinger equation  
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

= 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝐾𝐸
+ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑉) 

𝐸 = 𝐾𝐸 + 𝑉…… . . 3.1   
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• Time Dependent Schrodinger equation (TDSE) 



• *Test your understanding  
• start with 𝐸 = ℏ𝜔  𝑡𝑜 𝑓𝑖𝑛𝑑 𝑇𝐷𝑆𝐸  
• Then we have different formula of Schrodinger equation(S.E.) 
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• The simplest formula of  S.E. is: 
• 𝐻𝜓 = 𝐸𝜓  
• 𝐻 = 𝑇 = 𝐾𝐸 + 𝑉  
• 𝐻:𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛  
 



• 3.2 Probability current Density 

• The idea of probability current comes from the 
multiplication  (product) 

•  of   𝜓 ∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡  

• This relation leads to the term of probability current, if 
we examine the principles of classical physics, we can 
find the concepts of density and of current. 

• The change in the electrical charge density with time 
within a certain is zone leading to transfer the electrical 
current outside the surrounding surface and the same 
concept is applied on material, heat,.....etc. 
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• Where ρ is the density of the electrical charge, t is 
time, S is the output current and x is the surrounding 
surface. However the negative (-) sign means 
decreasing the density inside the enclosure volume.  

• This idea con be generalized to the principle of 
probability density of quantum mechanics. 

• Let 𝜓 𝑥, 𝑡  is the variation with time and the 

probability density −
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  variation with time, the 

probability density reducing with time, this agrees  



• with equation(3.4) then the leakage current is found and to 
describe this leakage starting by Schrodinger equation. 
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• And the conjugate equation  
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• Multiple equation (3.5) by 𝜓∗ & equation (3.6) by 𝜓 and Subtract 
them 

• we will get the following 
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• By comparing equation(3.7) and equation (3.4) 
we can conclude that the term 𝜓∗𝜓      
representing the probability density and 
corresponding to 𝜌. 

• Thus, the probability current density equation  
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• Equation (3.8) is called continuous equation ; by 
using the above equation can be determine the 
current probability density for any wave equation 
or wave function. 

 



• 3.3 Applications of Schrodinger equation 
• 3.3.1 Free particle 
• Free partial means no force effect on particle 

then the potential energy is equal to =zero. 
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• The TISE 
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•
𝑑2𝜓

𝑑𝑥2
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• The solution : 
• 𝜓 = 𝐴𝑒𝑖𝑘𝑥 represents the particle that is move to the right 

side, with momentum equals 𝑃 = ℏ𝑘. 

• 𝜓 𝑥 = 𝐵𝑒−𝑖𝑘𝑥represents the particle that is moved to the 
left side, with momentum equals 𝑃 = ℏ𝑘. 

• The probability Density of free particle at any point equals 

• 𝜓∗
𝑥
𝜓 𝑥 = 𝐴 ∗𝑒𝑖𝑘𝑥 𝐴𝑒−𝑖𝑘𝑥 = 𝐴 ∗𝐴 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

• The probability density of free particle in any point equals 
to the P.D. in any other points this means the 
uncertainty  Δ𝑥 = ∞. The result agrees with the 
Heisenberg uncertainty principle. 

 



• The particle moved with the momentum of 
𝑃 = ℎ𝑘 means ∆𝑃 = 0  

• ∆𝑥. ∆𝑃 ≥ ℏ  

• ∆𝑥 = ∞ 𝑤ℎ𝑒𝑛 ∆𝑃𝑥 = 0  

 

Thank You For Listening 


