Laser & Opto-Electronic Eng. Dept. **2017 -2018**

LEC.(3) CONTROLLECTION CONTROLLECTION CONTROLLECTION

Line Spectra

The visible light spectrum.

White light \Rightarrow continuous spectrum (all wavelengths present).

Discharge in gas \Rightarrow few colors appear. (Isolated lines).

This is a line spectrum.

Example

Discharge in :

Hydrogen

Sodium

Iron

Energy Levels

Every element has a characteristic line spectrum \Rightarrow result from the structure of atoms of the element.

Figure (6): Atomic structure.

Bohr model of the atom:

The spectrum of H-atoms is explained by Bohr using 3 basic postulates:

1. The electron in H-atom can rotate about the nucleus in certain fixed orbit of radius (r), where orbital angular momentum L is a multiple of $\frac{n}{2}$ (*h*) 2 $\frac{\mu}{\pi}(\hbar$ $\frac{h}{\sqrt{h}}(h) \rightarrow$ i.e. Angular momentum is quantized.

$$
L = \text{Iw} = \text{mvr} = \text{n}\hbar = \frac{nh}{2\pi}
$$

n = integer 1,2,3,4,……………

m = mass of the electron

v = linear velocity

The electrostatic force = The centripetal force

$$
Kq_1q_2/r_2 = mv^2/r
$$

Hence:

$$
r = kze^2/mv^2
$$
 (1)

Angular momentum L =Iω = nħ …………….. (2)

Since $I = mr^2$, $\omega = v/r$

2. The electron in the **stationary orbit (or state) does not emit electromagnetic radiation**.

3. Radiation emitted or absorbed, When an electron undergoes a transition from one orbit to another, the energy of absorbed or emitted light photon is:
\n
$$
\Delta E = E_1 - E_2 = h \nu
$$

UNIVERSITY OF TECHNOLOGY LEC.(3) CONTROLLECTION CONTROLLECTION CONTROLLECTION

Laser & Opto-Electronic Eng. Dept. **2017 -2018**

LEC.(3) CONTROLLECTION CONTROLLECTION CONTROLLECTION

This can be derived as follows:

 $\theta = s/r$

dθ = ds/r

dθ/dt = (1/r) ds/dt

Hence: ω = v/r

So:

mr2v/r = nħ

v =nħ/mr ……….(3)

Substitute (3) into (1), get:

r = n2ħ² / kze2 m …………..(4)

Substitute (4) into (3):

V = (nħ/m) (kze2m/ n2ħ2)

V =kze2/nħ ……………….(5)

Total energy:

 $E_t = E_k + E_p$

 $= 1/2$ mv²+E_p

Work done W = ∫Fdr

$$
= \int (kze^2/r^2) dr
$$

rbrb

$$
= kze2 \left[(1/r) \right]
$$

$$
r_{\alpha}
$$

Laser & Opto-Electronic Eng. Dept. **2017 -2018**

LEC.(3) CONTROLLECTION CONTROLLECTION CONTROLLECTION

$$
= -kze^2/r_b + kze^2/r_a
$$

If r^b=**r** , $r_a = ∞$

So :

$$
W = -kze^2/r = E_p
$$
(6)

So:

E^t = 1/2mv² + (- kze² /r)

Substitute for the value of (v) from (5) :

$$
\mathbf{E}_t = -m z^2 e^4 k^2 / 2 n^2 \hbar^2
$$

The negative sign is due to the connection between the nucleus and the electron.

For hydrogen atom

 $z = 1$

$$
[(-9.1 \times 10^{-31}) \times (1.6 \times 10^{-19})^4 \times (9 \times 10^9)^2
$$

 $E_t = -$

2 x (6.63xx10⁻³⁴ /6.28)² n²

 $= -2179.6 \times 10^{-21}$ / n² Joule

Hence:

$$
E_t = -13.6/n^2
$$

(Dividing by the charge of the electron).

UNIVERSITY OF TECHNOLOGY LEC.(3) CONTROLLECTION CONTROLLECTION CONTROLLECTION

Laser & Opto-Electronic Eng. Dept. **2017 -2018**

Now according to Bohr theory:

- $n=1$ $E_1 = -13.6eV$
- $n=2$ $E_2 = -13.6/4 = -3.4$ ev
- $n=3$ E₃ = -1.51 ev

 $n=\infty$ E∞ = 0

Now to calculate (**λ**) for the spectrum of the H-atom

E=hυ = hc/**λ**

λ =hc/E

 $1st$ orbit **For transition 1 → ∞**

DR .FAREED F. RASHID 6

LASER & OPTO-ELECTRONIC ENG. DEPT. 2017 -2018

 $\lambda_{\mathsf{(co-1)}}$ = (6.63x10⁻³⁴ x3x10⁸) / (13.6x1.6x10⁻¹⁹) = 914x10⁻¹⁰m

Spectroscopy LEC.(3)

= **91.4nm (u.v region)**

For line $2 \rightarrow 1$

E=13.6-3.4=10.2ev.

So **λ**₂→₁ = (6.63x10⁻³⁴ x3x10⁸) / (10.2x1.6x10⁻¹⁹) = **121.8nm (u.v)**

2 nd orbit

$$
\lambda_{\{\infty\text{-}2\}} = (6.63 \times 10^{-34} \times 3 \times 10^8) / (3.4 \times 1.6 \times 10^{-19}) = 365.6 \text{nm (u.v region)}
$$
\n
$$
\lambda_{\{3\text{-}2\}} = (6.63 \times 10^{-34} \times 3 \times 10^8) / (1.9 \times 1.6 \times 10^{-19}) = 654.2 \text{nm (visible)}
$$
\n
$$
\downarrow
$$
\n
$$
(3.4-1.5)
$$

Finding Line Wavelength (or Frequency)

Balmer Series

 $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$

 $R \equiv Rydberg constant$.

$$
n \equiv 3, 4, 5, \dots
$$

 $R \equiv 1.097 \times 10^{-7}$ m

 $\lambda \equiv$ wavelength in m.

If $n=3$

DR .FAREED F. RASHID 7

UNIVERSITY OF TECHNOLOGY LEC.(3) CONTROLLECTION CONTROLLECTION CONTROLLECTION

Laser & Opto-Electronic Eng. Dept. **2017 -2018**

$$
\frac{1}{\lambda} = 1.097 \times 10^7 \times \left(\frac{1}{4} - \frac{1}{9}\right)
$$

= 1.524 x 10^6 m⁻¹

$$
\therefore \lambda = 656.3 \ \ nm \ \Rightarrow H_{\alpha} \equiv red.
$$

If $n = 4 \Rightarrow H_\beta = blue, 486.1 \ nm$

For $n = \infty$ (the limit of the series).

 $\Rightarrow \lambda = 364.6$ nm (shortest λ in the series).

Other Series

Lyman, Paschen, Brackett and Pfund

-Lyman:
$$
\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{n^2} \right)
$$
 $n = 2, 3, ...$
-Paschen: $\frac{1}{\lambda} = R \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$ $n = 4, 5, ...$

-Brackett:
$$
\frac{1}{\lambda} = R\left(\frac{1}{4^2} - \frac{1}{n^2}\right)
$$
 $n = 5,6,...$

-
$$
\text{-Pfund:} \quad \frac{1}{\lambda} = R\left(\frac{1}{5^2} - \frac{1}{n^2}\right) \qquad n = 6, 7, \dots
$$

Lyman series wavelengths **ALL U.V**

Balmer series wavelengths **U.V + Visible**

Paschen Bracket **All I.R** Pfund

DR .FAREED F. RASHID 8