LASER & OPTO-ELECTRONIC ENG. DEPT.

Spectroscopy Lec.(3)

Line Spectra

The visible light spectrum.

White light \Rightarrow continuous spectrum (all wavelengths present).

Discharge in gas \Rightarrow few colors appear. (Isolated lines).

This is a line spectrum.

EXAMPLE

Discharge in :

Hydrogen

Sodium

Iron

Energy Levels

Every element has a characteristic line spectrum \Rightarrow result from the structure of atoms of the element.

UNIVERSITY OF TECHNOLOGY LASER & OPTO-ELECTRONIC ENG. DEPT. Spectroscopy Lec.(3) UNIVERSITY OF TECHNOLOGY LASER & OPTO-ELECTRONIC ENG. DEPT. Spectroscopy Lec.(3) UNIVERSITY OF TECHNOLOGY Lec.(4) UNIVERSITY O

Figure (6): Atomic structure.

Bohr model of the atom:

The spectrum of H-atoms is explained by Bohr using 3 basic postulates:

1. The electron in H-atom can rotate about the nucleus in certain fixed orbit of radius (r), where orbital angular momentum L is a multiple of $\frac{h}{2\pi}(\hbar) \rightarrow i.e.$ Angular momentum is quantized.

L= Iw = mvr = n
$$\hbar$$
 = $\frac{nh}{2\pi}$

n = integer 1,2,3,4,..... ∞

m = mass of the electron

v = linear velocity

LASER & OPTO-ELECTRONIC ENG. DEPT.

The electrostatic force = The centripetal force

$$Kq_1q_2/r_2 = mv^2/r$$

Hence:

Since $I = mr^2$, $\omega = v/r$

2. The electron in the stationary orbit (or state) does not emit electromagnetic radiation.

Spectroscopy

LEC.(3)

3. Radiation emitted or absorbed, When an electron undergoes a transition from one orbit to another, the energy of absorbed or emitted light photon is:

$$\Delta E = E_1 - E_2 = hv$$

LASER & OPTO-ELECTRONIC ENG. DEPT.

LEC.(3)

Spectroscopy

This can be derived as follows:

 $\theta = s/r$

 $d\theta = ds/r$

 $d\theta/dt = (1/r) ds/dt$

Hence: $\omega = v/r$

So:

mr²v/r = nħ

Substitute (3) into (1), get:

$r = n^2 \hbar^2 / kze^2 m$(4)

Substitute (4) into (3):

 $V = (n\hbar/m) (kze^2m/n^2\hbar^2)$

V =kze²/nħ(5)

Total energy:

 $E_t = E_k + E_p$

= 1/2mv²+E_p

Work done $W = \int F dr$

rь ч

LASER & OPTO-ELECTRONIC ENG. DEPT.

Spectroscopy

LEC.(3)

2017 -2018

$$= -kze^{2}/r_{b} + kze^{2}/r_{a}$$
 If $r_{b}=r$, $r_{a} = \infty$

So:

$$W = -kze^{2}/r = E_{p}$$
(6)

So:

$E_t = 1/2mv^2 + (-kze^2/r)$

Substitute for the value of (v) from (5) :

$$E_{t} = -mz^{2}e^{4}k^{2}/2n^{2}\hbar^{2}$$

The negative sign is due to the connection between the nucleus and the electron.

For hydrogen atom

z =1

$$[(-9.1 \times 10^{-31}) \times (1.6 \times 10^{-19})^4 \times (9 \times 10^9)^2$$

 $E_{t} = -$

2 x (6.63xx10⁻³⁴ /6.28)² n²

= -2179.6 x 10⁻²¹ / n² Joule

Hence:

E_t = -13.6/n² ev

(Dividing by the charge of the electron).

LASER & OPTO-ELECTRONIC ENG. DEPT.

Now according to Bohr theory:

n=1 $E_1 = -13.6ev$

- n=2 $E_2 = -13.6/4 = -3.4 \text{ ev}$
- n=3 $E_3 = -1.51 ev$

n=∞ E_∞ = 0

Spectroscopy

LEC.(3)

2017 - 2018

Now to calculate (λ) for the spectrum of the H-atom

 $E=hu = hc/\lambda$

 $\lambda = hc/E$

<u>1st orbit</u> For transition $1 \longrightarrow \infty$

DR .FAREED F. RASHID

LASER & OPTO-ELECTRONIC ENG. DEPT.

 $\lambda_{(\infty-1)} = (6.63 \times 10^{-34} \times 3 \times 10^8) / (13.6 \times 1.6 \times 10^{-19}) = 914 \times 10^{-10} \text{m}$

= 91.4nm (u.v region)

For line $2 \longrightarrow 1$

E=13.6-3.4=10.2ev.

So $\lambda_2 \rightarrow 1 = (6.63 \times 10^{-34} \times 3 \times 10^8) / (10.2 \times 1.6 \times 10^{-19}) = 121.8$ nm (u.v)

2nd orbit

$$\lambda_{(\infty-2)}$$
 = (6.63×10⁻³⁴×3×10⁸) / (3.4×1.6×10⁻¹⁹) = 365.6nm (u.v region)
 $\lambda_{(3-2)}$ = (6.63×10⁻³⁴×3×10⁸) / (1.9×1.6×10⁻¹⁹) = 654.2nm (visible)
(3.4-1.5)

Finding Line Wavelength (or Frequency)

Balmer Series

 $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$

 $R \equiv Rydberg$ constant.

$$n \equiv 3, 4, 5, ...$$

 $\mathbf{R} \equiv 1.097 \times 10^{-7} m$

 $\lambda \equiv$ wavelength in m.

If n = 3

DR .FAREED F. RASHID

Spectroscopy LEC.(3)

LASER & OPTO-ELECTRONIC ENG. DEPT.

$$\frac{1}{\lambda} = 1.097 \times 10^7 \times \left(\frac{1}{4} - \frac{1}{9}\right)$$

=1.524x10⁶ m⁻¹

$$\therefore \lambda = 656.3 \ nm \implies H_{\infty} \equiv red.$$

If $n = 4 \Longrightarrow H_{\beta} = blue, 486.1 \ nm$

For $n = \infty$ (the limit of the series).

 $\Rightarrow \lambda = 364.6 \ nm \ (shortest \lambda \ in \ the \ series).$

Other Series

Lyman, Paschen, Brackett and Pfund

-Lyman:
$$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$$
 $n = 2,3,...$
-Paschen: $\frac{1}{\lambda} = R \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$ $n = 4,5,...$

-Brackett:
$$\frac{1}{\lambda} = R \left(\frac{1}{4^2} - \frac{1}{n^2} \right)$$
 $n = 5, 6, ...$

-Pfund:
$$\frac{1}{\lambda} = R\left(\frac{1}{5^2} - \frac{1}{n^2}\right)$$
 $n = 6,7,...$

Lyman series wavelengths ALL U.V

Balmer series wavelengths U.V + Visible

Paschen Bracket Pfund

DR .FAREED F. RASHID

Spectroscopy LEC.(3)