
${}_{2} = mRT_{2} V_{2}P$ ${}_{2} = T_{1}T$ ${}_{2} = \bigvee_{1} P$ ${}_{1}V_{2}P$ st law Q=W1 and from 0 *then* $\Delta u = 0$ Also since $\Delta T =$

&

 $1/v2And w=pv \ln v$ the adiabatic process 2.6 It is a special case of polytropic process in which heat Q not allowed to be entered or leave the system This process follow the law $PV^n = cons \tan t$

$$Q-W=\Delta U$$

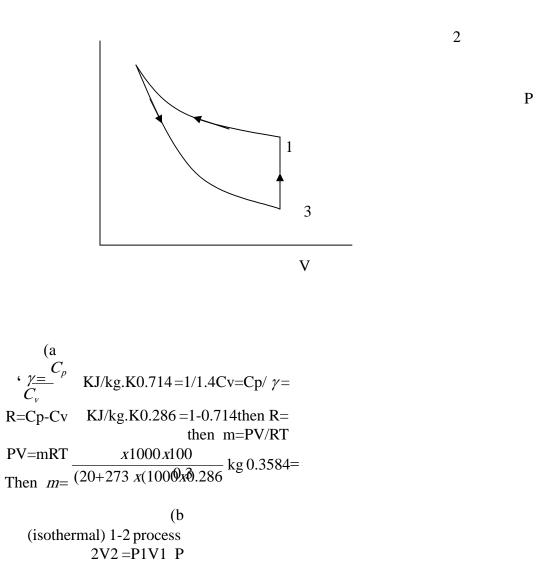
$$0W+\Delta U=$$

$$0) = {}_{1}-T_{2}-n) + mC_{v}(T1)/({}_{1}-T_{2} mR(T)$$

$$\frac{R}{-n1} 0 + C_{v} = \therefore$$
$$(0-n)C_{v} = 1R + (n-1)C_{v} = 1R + (n-$$

$$0R + C_v - C_v n =$$

$$-n = \frac{R + C_v}{C_v}$$


 $R = C_p - C_v But$

 $ry = \gamma$ for air1.4 Where γ is the adiabatic index=

and a temperature of ² kN/m 100at a pressure of ³ m 0.3 Ex A quantity of gas occupies a volume of and then expanded ² kN/m 500°C. The gas is compressed isothermally to a pressure of 20 adiabatically to its initial volume, then the gas is compressed under constant volume process to its kJ/kg.K1, $C_p = 1.4$ initial state, if $\gamma =$

⁹ Draw P-V diagram for the cycle .What is The mass of the gas (a)

(st law of thermodynamics for the cycle (i.e. $\sum Q = \sum W_1 \mathbf{b}$) Verify

