
Lecture 1: Computer Applications and AI-MATLAB 1

MATLAB

MATLAB: is a high-level language and interactive environment that enables

you to perform computationally intensive tasks faster than with traditional

programming languages such as C, C++, and Fortran.

What is MatLab?

 Matlab is a computer program that combines computation and visualization

power that makes it particularly useful for engineers.

 Matlab is an executive program, and a script can be made with a list of Matlab

commands like other programming language.

 Matlab stands for MATrix LABoratory.

 The system is designed to make matrix computation particularly easy.

 The Matlab environment allows the user to:

 (1) manage variables (2) import and export data (3) perform calculations

 (4) generate plots (5) develop and manage files for use with Matlab

MATLAB Desktop

When you start MATLAB, the MATLAB desktop appears as shown in

Fig (1.1), containing tools (graphical user interfaces) for managing files,

variables, and applications associated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the following

illustration, although your Launch Pad may contain different entries.

Lecture 1: Computer Applications and AI-MATLAB 2

 Fig (1.1): MATLAB Desktop

Desktop Tools

This section provides an introduction to MATLAB’s desktop tools. You can

also use MATLAB functions to perform most of the features found in the desktop

tools. The tools are:

• “Command Window”

• “Command History”

• “Workspace Browser”

• “Help Browser”

• “Current Directory Browser”

• “Editor/Debugger”

Lecture 1: Computer Applications and AI-MATLAB 3

Command Window

Command Window used to enter variables and run functions and M-files,

as shown in Fig (1.2).

 Fig (1.2): Command window page

Command History

Lines you enter in the Command Window are logged in the Command

History window. In the Command History as shown in Fig (1.3), you can view

previously used functions, and copy and execute selected lines.

Fig (1.3): Command history window

Lecture 1: Computer Applications and AI-MATLAB 4

Workspace Browser

The MATLAB workspace as shown in Fig (1.4) consists of the set of

variables (named arrays) built up during a MATLAB session and stored in

memory. You add variables to the workspace by using functions, running M-files,

and loading saved workspaces. To view the workspace and information about each

variable, use the Workspace browser, or use the functions who and whos.

Fig (1.4): Command Window page

Table (1.1) list variable, vector, matrix, and string declaration in MATLAB:

Table (1.1): Variable, Vector, Matrix, and String Declaration

Data Mathematical

Representation

MATLAB

Representation

Numerical

variable (scalar)

e.g. z=5 e.g. z=5

Row vector e.g. x=1 5 7 2 e.g. x=[1 5 7 2]

or x=[1,5,7,2]

Column vector e.g.

𝒚 =
𝟐
𝟗
𝟔

e.g. y=[2;9;6]

matrix
e.g. 𝒎 =

𝟏 𝟓
𝟐 𝟔
𝟖 𝟏

e.g. m=[1 5; 2 6; 8 1]

or m=[1,5;2, 6;8,1]

string e.g. Hello e.g. s=’Hello’

Lecture 1: Computer Applications and AI-MATLAB 5

Table (1.2) list some MATLAB commands:

Table (1.2): Some MATLAB commands

Command Description

who Lists the variables currently in the workspace

whos Displays a list of the variables currently in the memory and their

size together with information about their bytes and class

clc Clear the Command Window

clear Removes all variables from the memory (workspace)

clear x,z Clears/ removes only variables x, and z from the memory

(workspace)

help Helps user to acquire topics, commands, and/or process

Help function Helps user to acquire a specific topic, command, and/or

process

quit Exit from MATLAB

Notes: to see the relationship between the Command Window, Command History,

and Workspace Browser see the following examples:

1- To declare the scalar (numerical variable) as shown in Fig (1.5) like z=5 then in

Command Window after >> write z=5 then press enter key and you can see that

the value of z becomes 5 and the command z=5 enters to the Command History

and in Workspace Window you can see the Name is z and its value 5

>>z=5

 z=5

 To check the value of z write the command z and press enter key and you can

see that the value of z =5 and the command z enters to the Command History

>>z

 z=5

Lecture 1: Computer Applications and AI-MATLAB 6

 Use command who then the message Your variables are: z appeared, also the

command who enters to the Command History

 Use command whos then the table appeared which include the Name of

variable is z and its Size is 1x1 (which means matrix of 1 row and 1 column)

and the No. of Bytes which allocated from the memory to the variable z are 8

and the Class of variable z is double by default declaration, also the command

whos enters to the Command History

Fig (1.5): Numerical variable (scalar) example

 To clear the Command Window, use the command clc or Home→Clear

Commands→Command Window or from the down arrow (Show Command

Window Actions) which appeared in the title bar of Command Window select

Clear Command Window.

 To clear the Workspace Browser window, use the command clear or

Home→Clear Workspace then all the variables are removed from the

memory or from the down arrow (Show Workspace Actions) which appeared

in the title bar of Workspace Window select Clear Workspace.

Lecture 1: Computer Applications and AI-MATLAB 7

 Use command clear z to remove variable z only from the memory, while

clear x,z used to remove variables x and z from the memory.

 To clear the Command History, use Home→Clear

Commands→Command History or from the down arrow (Show Command

History Actions) which appeared in the title bar of Command History Window

select Clear Command History.

 Use Home→Layout to show or close any window or return to Default view

2- To declare the row vector as shown in Fig (1.6), for example x=[1 5 7 2] or

x=[1,5,7,2] and you can see that x=1 5 7 2 and in Workspace Window you can

see the Name is x and its value [1,5,7,2]

>> x=[1 5 7 2]

 x =1 5 7 2

 To check the value of x write the command x and press enter key and you can

see that x =1 5 7 2

>>x

x =1 5 7 2

 Use command who then the message Your variables are: x appeared.

 Use command whos then the table appeared which include the Name of

variable is x and its Size is 1x4 (which means matrix of 1 row and 4 columns)

and the No. of Bytes which allocated from the memory to the vector x are 32

(8*4) and the Class of vector x is double by default declaration

Lecture 1: Computer Applications and AI-MATLAB 8

Fig (1.6): Row vector example

3- To declare the column vector as shown in Fig (1.7), for example y=[2;9;6] and

you can see that

y=
𝟐
𝟗
𝟔

 and in Workspace Window you can see the Name is y and its value [2;9;6]

>> y=[2;9;6]

y=

𝟐
𝟗
𝟔

Lecture 1: Computer Applications and AI-MATLAB 9

 Use command whos then the table appeared which include the Name of

variable is y and its Size is 3x1 (which means matrix of 3 rows and 1 column)

and the No. of Bytes which allocated from the memory to the vector y are 24

(8*3) and the Class of vector y is double by default declaration.

Fig (1.7): Column vector example

4- To define the matrix as shown in Fig (1.8), for example m=[1 5; 2 6; 8 1] or

m=[1,5;2, 6;8,1] and you can see that

m=

𝟏 𝟓
𝟐 𝟔
𝟖 𝟏

and in Workspace Window you can see the Name is m and its value [1,5;2,

6;8,1]

>> m=[1 5; 2 6; 8 1]

m=

𝟏 𝟓
𝟐 𝟔
𝟖 𝟏

Lecture 1: Computer Applications and AI-MATLAB 10

 Use command whos then the table appeared which include the Name of

variable is m and its Size is 3x2 (which means matrix of 3 rows and 2 columns)

and the No. of Bytes which allocated from the memory to the matrix m are 48

(8*6) and the Class of matrix m is double by default declaration

Fig (1.8): Matrix example

5- To declare the string as shown in Fig (1.9), for example s=’Hello’ and you can

see that s=’Hello’ and in Workspace Window you can see the Name is s and its

value ‘Hello’

 Use command whos then the table appeared which include the Name of string

is s and its Size is 1x5 (which means matrix of 1 row and 5 columns

(characters)) and the No. of Bytes which allocated from the memory to the

string s are 10 (2*5) and the Class of string s is char by default declaration

Fig (1.9): String example

Lecture 1: Computer Applications and AI-MATLAB 11

Help Browser

Use the Help browser as shown in Fig (1.10) to search and view documentation

for all Math Works products.

Fig (1.10): Help browser

 For example, as shown in Fig (1.11), command help sin to see the help for

function sin

Fig (1.11): Command help sin

Lecture 1: Computer Applications and AI-MATLAB 12

Current Directory Browser

MATLAB file operations use the current directory and the search path

as reference points. Any file you want to run must either be in the current

directory or on the search path. A quick way to view or change the current

directory is by using the Current Directory field in the desktop toolbar as shown

below.

To search for, view, open, and make changes to MATLAB-related directories

and files, use the MATLAB Current Folder browser. As shown in Fig (1.12)

Fig (1.12): Current Folder browser

Editor/Debugger

Use the Editor/Debugger to create and debug M-files as shown in

Fig (1.13), which are programs you write to run MATLAB functions. The

Editor/Debugger provides a graphical user interface for basic text editing, as

well as for M-file debugging.

Fig (1.13): Editor/Debugger

Lecture 1: Computer Applications and AI-MATLAB 13

 Use Home→New Script or Editor->New to write m file (program) in matlab

then write your program as shown in Fig (1.14).

x=5

y=3

z=x+y

Fig (1.14): M-File Example

 To run your program, use Editor→Run then Save File Window appeared to save

your file write for example the name of file test in File name: and you can see the

type of file is MATLAB Code files (*.m) then press save as shown in Fig (1.15)

Fig (1.14): Save

Lecture 1: Computer Applications and AI-MATLAB 14

Note: If you are in the current folder of matlab then may be the following message

appeared if you don’t have the permission to save in the current folder of the matlab

and ask if you want to save in the document folder instead then choose Yes to save

in the document folder or choose No then select another location and press Save

again, then another message appeared to add the path and always choose this location

then the previous message not appeared again because this path be the current

directory or select change path instead to add the path temporary then always do the

same steps to run the program. as shown in Fig (1.15)

Fig (1.15): Steps to change folder

Lecture 1: Computer Applications and AI-MATLAB 15

 In the Command window you can see the output of execution (run) the program

test. As shown in Fig (1.15)

Fig (1.15): Run M-File program

 When you don’t want to see the output of execution any command then put ; at

the end of this command. As shown in Fig (1.16)

Fig (1.15): ; example

When you want to write comment or to stop the execution of any command in

the program then put % at the left of the comment.

Lecture 2: Computer Applications and AI-Scalar 1

Numerical Variable (Scalar)

As a programmer, you will frequently want your program to "remember" a

value. For example, if your program requests a value from the user, or if it calculates

a value, you will want to remember it somewhere so you can use it later. The way

your program remembers things is by using variables. Variables represent storage

locations in the computer's memory.

Example: X=5

Format:

Use these format types to switch between different output display formats for

floating-point variables. Table (2.1) list some MATLAB format commands:

Table (2.1): Format commands

Type Description

short Scaled fixed point format, with 4 digits after the decimal point. For example,

3.1416.

long Scaled fixed point format with 14 to 15 digits after the decimal point for

double; and 7 digits after the decimal point for single. For example,

3.141592653589793.

short e Floating point format, with 4 digits after the decimal point. For example,

3.1416e+000.

long e Floating point format, with 14 to 15 digits after the decimal point for double;

and 7 digits after the decimal point for single. For example,

3.141592653589793e+000.

short g Best of fixed or floating point, with 4 digits after the decimal point. For

example, 3.1416.

long g Best of fixed or floating point, with 14 to 15 digits after the decimal point for

double; and 7 digits after the decimal point for single. For example,

3.14159265358979.

short eng Engineering format that has 4 digits after the decimal point, and a power that is

a multiple of three. For example, 3.1416e+000.

long eng Engineering format that has exactly 16 significant digits and a power that is a

multiple of three. For example, 3.14159265358979e+000.

Lecture 2: Computer Applications and AI-Scalar 2

>>format short

>>x=3.1415

x=3.1415

>> format long

>> x

x = 3.141500000000000

>> format shorte

>> x

x = 3.1415e+00

>> format longe

>> x

x = 3.141500000000000e+00

>> format short g

>> x

x = 3.1415

>> format long g

>> x

x = 3.1415

>> format short eng

>> x

x = 3.1415e+000

Lecture 2: Computer Applications and AI-Scalar 3

>> format long eng

>> x

x = 3.14150000000000e+000

>> format short eng

>> x=3000000.678

x = 3.0000e+006

>> format long eng

>> x

x = 3.00000067800000e+006

>> x=3000.678

x = 3.00067800000000e+003

Arithmatic operations:

Table (2.2) list Arithmatic operations

Table (2.2): Arithmatic operations

Notation Math. Representation MATLAB Representation

Addition e.g. 𝑧 = 𝑥 + 𝑦 e.g. >> 𝑧 = 𝑥 + 𝑦

Subtraction e.g. 𝑧 = 𝑥 − 𝑦 e.g. >> 𝑧 = 𝑥 − 𝑦

Multiplication e.g. 𝑧 = 𝑥 × 𝑦 e.g. >> 𝑧 = 𝑥 ∗ 𝑦

Division e.g. 𝒛 =
𝑿

𝒀
 e.g. >> 𝑧 = 𝑥 / 𝑦 (right division)

e.g. 𝒛 =
𝒀

𝑿
 e.g. >> 𝑧 = 𝑥 \ 𝑦 (left division)

Raise to the power e.g. 𝑧 = 𝑥a e.g. >> 𝑧 = 𝑥^𝑎

Nth Root e.g. 𝒛 = √𝑿
𝑵

 e.g. >> 𝑧 = 𝑥^(1/𝑁)

Lecture 2: Computer Applications and AI-Scalar 4

Examples:

>>x=5;

>>y=3;

>>z=x+y

z=8

>>z=x-y

z=2

>>z=x*y

z=15

>>z=x/y

z=1.6667

>>z=x\y

z=0.6000

>>z=x^2

z=25

>>z=x^0.5

z=2.2316

Priorities in MATLAB

The MATLAB software is a mathematical tool. Therefore, it obeys all

mathematical roles and condition. Regardless other roles, the priorities in MATLAB

are come up to brackets first (), raising to the power ^, division, multiplication, and

finally to addition and subtraction.

Example: write a program to find 𝐳 =
𝐱+𝐱𝟐

𝟐𝐱𝐲
 where x=5 and y=10

≫ 𝑥 = 5;

≫ 𝑦 = 10;

≫ 𝑧 = (𝑥 + 𝑥^2)/ (2 ∗ 𝑥 ∗ 𝑦)

z=0.3000

Lecture 2: Computer Applications and AI-Scalar 5

Built in Functions in MATLAB

>>x=90;

>>sin(x*3.14/180) % angle in radian

ans=1.0000

>>asin(1)*180/3.14

ans=90.0456

>> sind(x) % angle in degree

 ans = 1

>> asind(1)

ans = 90

>>x=25;

>>exp(x)

ans= 7.2005e+10

Lecture 2: Computer Applications and AI-Scalar 6

>>sqrt(x)

ans=5

>>x=100;

>>log(x)

ans= 4.6052

>>log10(x)

ans=2

>>x=-25;

>>abs(x)

ans=25

>> x=6.7

x = 6.7000

>> ceil(x)

ans =7

>> floor(x)

ans = 6

>> round(x)

ans = 7

>> x=6.2

x = 6.2000

>> ceil(x)

ans =7

>> floor(x)

ans = 6

>> round(x)

ans = 6

Lecture 2: Computer Applications and AI-Scalar 7

>>x=-6.7;

>>ceil(x)

ans=-6

>>floor(x)

ans=-7

>>round(x)

ans=-7

>> x=5.234;

>> fix(x) %rounds the elements of X to the nearest integers towards zero.

ans = 5

>> x=5.834;

>> fix(x)

ans = 5

>> x=-5.834;

>> fix(x)

ans = -5

>> rem(5,2)

ans = 1

>> mod(5,2) % is the same as rem

ans = 1

Example : when x=20, y=25 find 𝑧 = |√𝑦2 − 𝑥|

>>x=20;

>>y=25;

>>z=abs(sqrt(y)-x)

z=15

Lecture 2: Computer Applications and AI-Scalar 8

Example: transformation of mathematical equation to code when x=10, z=3,

Q=90

𝒚 =

𝒙 + 𝒛
𝒆𝒙 +

𝐬𝐢𝐧 𝑸
𝒕𝒂𝒏 𝑸

𝐥𝐨𝐠 𝒙 + √𝒙 + 𝟐𝒙
𝟑

>>x=10;

>>z=3;

>>Q=90;

>>y=((x+z)/exp(x) +sind(Q)/tand(Q)) / (log(x)+sqrt((x+2*x)/3))

Example: transformation of mathematical equation to code when x=3, z=5,

y=4, Q=3.1415

𝒎 =

𝐜𝐨𝐬 𝑸 + 𝐬𝐢𝐧 𝑸
𝒆𝒙 +

|𝒙 − 𝒛|
𝒚

√𝒛𝟐 + 𝒚𝟐 − 𝒙

>>x=3;

>>z=5;

>>y=4;

>>Q=3.1415;

>>m=((cos(Q)+sin(Q)) /exp(x)+abs(x-z)/y) / sqrt(z^2+y^2-x)

Lecture 2: Computer Applications and AI-Scalar 9

Relational Operators

When generating code for the Embedded MATLAB Function block, the coder

supports the relational operators (and their M-function equivalents) listed in

Table (2.3)

Table (2.3): Relational operators

Relation Operator

Syntax

M Function

Equivalent

Fixed-Point

Support?

Less than A<B lt(A,B) Y

Less than or equal to A<=B le(A,B) Y

Greater than A>B gt(A,B) Y

Greater than or equal to A>=B ge(A,B) Y

Equal A==B eq(A,B) Y

Not equal A~=B ne(A,B) Y

Note: When the condition satisfied the answer becomes 1 otherwise 0

Examples:

>>a=6;

>>b=4;

>>a<b

ans=0

>>lt(a,b)

ans=0

>>a<=b

ans=0

Lecture 2: Computer Applications and AI-Scalar 10

>>le(a,b)

ans=0

>>a>b

ans=1

>>gt(a,b)

ans=1

>>a>=b

ans=1

>>ge(a,b)

ans=1

>>a==b

ans=0

>>eq(a,b)

ans=0

>>a~=b

ans=1

>>ne(a,b)

ans=1

Data Types Available in MATLAB

MATLAB provides 15 fundamental data types. Every data type stores data that
is in the form of a matrix or array. The size of this matrix or array is a minimum

of 0-by-0 and this can grow up to a matrix or array of any size.

The following table shows the most commonly used data types in MATLAB −

Sr.No. Data Type & Description

1 int8
8-bit signed integer

2 uint8
8-bit unsigned integer

3 int16
16-bit signed integer

4 uint16
16-bit unsigned integer

5 int32
32-bit signed integer

6 uint32
32-bit unsigned integer

7 int64
64-bit signed integer

8 uint64
64-bit unsigned integer

9 single
single precision numerical data

10 double
double precision numerical data

11 logical
logical values of 1 or 0, represent true and false respectively

12 char
character data (strings are stored as vector of characters)

13 cell array
array of indexed cells, each capable of storing an array of a different dimension and data type

14
structure
C-like structures, each structure having named fields capable of storing an array of a different

dimension and data type

15 function handle
pointer to a function

16 user classes
objects constructed from a user-defined class

17 java classes
objects constructed from a Java class

Example

Create a script file with the following code −

Live Demo

str = 'Hello World!'

n = 2345

d = double(n)

un = uint32(789.50)

rn = 5678.92347

c = int32(rn)

When the above code is compiled and executed, it produces the following result

−

str = Hello World!

n = 2345

d = 2345

un = 790

rn = 5678.9

c = 5679

http://tpcg.io/mL79yz

Median: The middle number; found by ordering all data points and
picking out the one in the middle (or if there are two middle numbers,
taking the mean of those two numbers).

A = [13 22 76 44 90 12 16 13];
12 13 13 16 22 44 76 90
Median=(16+22)/2=38/2=19

Standard deviation

In statistics, the standard deviation is a measure of the amount of variation of the values of a
variable about its mean.

>>A = [13 22 76 44 90 12 16 13]; % A one-dimensional array (row vector)

>>mean(A) % Find the average value of vector A

ans = 35.7500

Standard%20deviationWikipediahttps:/en.wikipedia.org ›%20wiki%20›%20Standard_deviation
Standard%20deviationWikipediahttps:/en.wikipedia.org ›%20wiki%20›%20Standard_deviation
Standard%20deviationWikipediahttps:/en.wikipedia.org ›%20wiki%20›%20Standard_deviation
Standard%20deviationWikipediahttps:/en.wikipedia.org ›%20wiki%20›%20Standard_deviation

Lecture 3: Computer Applications and AI-Vectors and matrices 1

Vectors

 A vector is an ordered list of numbers. You can enter a vector of any length in

MATLAB by typing a list of numbers, separated by commas and/ or spaces, inside

square brackets. For example:

 >> Z = [2,4,6,8]

 Z =

 2 4 6 8

 >> Y = [4 -3 5 -2 8 1]

 Y =

 4 -3 5 -2 8 1

 Suppose that you want to create a vector of values running from 1 to 9. Here’s

how to do it without typing each number:

 >> X = 1: 9

 X =

 1 2 3 4 5 6 7 8 9

 The notation 1: 9 is used to represent a vector of numbers running from 1 to 9 in

increments of 1. The increment can be specified as the middle of three arguments:

 >> X = 0 : 2 : 6

 X = 0 2 4 6

 The elements of the vector X can be extracted as X(1), X(2), etc. For example:

>> X(3)

 ans = 4

You can perform mathematical operations on vectors. For example, to square

the elements of the vector X, type

>> X.^2

 ans = 0 4 16 36

Lecture 3: Computer Applications and AI-Vectors and matrices 2

 To change the vector X from a row vector to a column vector, put a prime (‘) after

X:

>> X’

 ans =

 0

 2

 4

 6

>> X = 6 : - 2 : 0

 X = 6 4 2 0

Increments can be fractional or negative, for example, 0: 0.1: 1 or 100 : -1 : 0.

linspace command

A vector with n elements that are linearly (equally) spaced in which the first

element is xi and the last element xn can be created using linspace command as

follow:

Variable_Name = linspace(xi , xn , m)

Matlab Command Command Abbreviation Command Interpretation

>> x = linspace (n, m) Linspace(1st number, last number) Create a linearly spaced vector

between n and m.

>> x = linspace (n, m, k) Linspace (1st number, last

number, number of elements)

Create a linearly spaced vector

between n and m with k

elements between them

Example:

>> m = linspace(1,4,5)

m = 1.0000 1.7500 2.5000 3.2500 4.0000

Lecture 3: Computer Applications and AI-Vectors and matrices 3

 A column vector is created the same way as the row vector, and the rows are

separated by semicolons

 To input a matrix, you basically define a variable. For a matrix the form is:

 variable name = [#,#; #,#; #,#; ….]

Example

>> x=[0 0.25*pi 0.5*pi]

 x =

 0 0.7854 1.5708

>> y=[0; 0.25*pi; 0.5*pi]

 y =

 0

 0.7854

 1.5708

Lecture 3: Computer Applications and AI-Vectors and matrices 4

Examples: Arithmetic operations between row vector and scalar

>>x=[2 5 1 4]

x= 2 5 1 4

>>z=x+2

z= 4 7 3 6

>>z=x-2

z= 0 3 -1 2

>>z=x*2

z= 4 10 2 16

>>z=x/2 %unwanted

z= 1.0000 2.5000 0.5000 2.0000

>> z=x\2 %unwanted

z =

 0

 0.4000

 0

 0

>> z=x./2

z = 1.0000 2.5000 0.5000 2.0000

>>z=x .\2

z= 1.0000 0.4000 2.0000 0.5000

>>z=x ^2

Error using ^

Inputs must be a scalar and a square matrix.

To compute elementwise POWER, use POWER (.^) instead.

>>z=x .^2

z= 4 25 1 16

Lecture 3: Computer Applications and AI-Vectors and matrices 5

Examples: Arithmetic operations between two row vectors

>>x=[2 5 1 4]

x= 2 5 1 4

>>y=[3 4 8 9]

y= 3 4 8 9

>>z=x+y % the two vectors must have the same no. of elements

z= 5 9 9 13

>>z=x-y % the two vectors must have the same no. of elements

z= -1 1 -7 -5

>>z=x*y

Error using *

Inner matrix dimensions must agree.

>>z=x.*y

z= 6 20 8 36

>> z=x/y %unwanted

z = 0.4118

>> z=x\y %unwanted

z =

 0 0 0 0

 0.6000 0.8000 1.6000 1.8000

 0 0 0 0

 0 0 0 0

>>z=x./y

z= 0.6667 1.2500 0.1250 0.4444

>>z=x.\y

z= 1.5000 0.8000 8.0000 2.2500

Lecture 3: Computer Applications and AI-Vectors and matrices 6

Multiplying a Matrix by Another Matrix

To perform matrix multiplication, the first matrix must have the same number

of columns as the second matrix has rows. The number of rows of the resulting

matrix equals the number of rows of the first matrix, and the number of columns of

the resulting matrix equals the number of columns of the second matrix.

To multiply matrix (2x3) by matrix (3x2) the answer is matrix (2x2)

To work out the answer for the 1st row and 1st column:

Multiply matching members, then sum up:

(1, 2, 3) • (7, 9, 11) = 1×7 + 2×9 + 3×11 = 58

We match the 1st members (1 and 7), multiply them, likewise for the 2nd members

(2 and 9) and the 3rd members (3 and 11), and finally sum them up.

Want to see another example? Here it is for the 1st row and 2nd column:

(1, 2, 3) • (8, 10, 12) = 1×8 + 2×10 + 3×12 = 64

We can do the same thing for the 2nd row and 1st column:

(4, 5, 6) • (7, 9, 11) = 4×7 + 5×9 + 6×11 = 139

And for the 2nd row and 2nd column:

(4, 5, 6) • (8, 10, 12) = 4×8 + 5×10 + 6×12 = 154

And we get:

Lecture 3: Computer Applications and AI-Vectors and matrices 7

Examples: Arithmetic operations between row vector and column vector

>>x=[2 5 1 4]

x= 2 5 1 4

>>y=[3; 4; 8; 9]

y= 3

 4

 8

 9

>>z=x+y

Error using + matrix dimensions must agree

>>z=x-y

Error using - matrix dimensions must agree

>>z=x*y % z(1x1)=x(1x4)*y(4x1)

z=70 % z=2*3+5*4+1*8+4*9=70

>>z=x.*y

Error using .* matrix dimensions must agree

>>z=x/y

Error using / matrix dimensions must agree

>>z=x\y

Error using \ matrix dimensions must agree

>>z=x./y

Error using ./ matrix dimensions must agree

>>z=x.\y

Error using .\ matrix dimensions must agree

Lecture 3: Computer Applications and AI-Vectors and matrices 8

Built in Functions

>>A = [13 22 76 44 90 12 16 13]; % A one-dimensional array (row vector)

>>mean(A) % Find the average value of vector A

ans = 35.7500

>>max(A) % Find the largest elements among all elements in vector A

ans = 90

>>min(A) % Find the smallest elements among all elements in vector A

ans = 12

>>sum(A) % Adds all elements of vector A

ans = 286

>>sort(A) % Ascending arrangement

ans = 12 13 13 16 22 44 76 90

>>median(A) % Median value of vector A

ans = 19

>>std(A) % Standard deviation of vector A

ans = 31.1895

Lecture 3: Computer Applications and AI-Vectors and matrices 9

Matrices

 Consider the 3x4 matrix

 It can be entered in MATLAB with the command

 >> A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]

 A =

 1 2 3 4

 5 6 7 8

 9 10 11 12

 Note that the matrix elements in any row are separated by commas, and the

rows are separated by semicolons. The elements in a row can also be separated

by spaces.

Matrix addressing

 -matrixname(row, column)

 -colon may be used in place of a row or column reference to select the entire

row or column

Example

>> A(2,3)

ans = 7

>> A(1,:)

ans = 1 2 3 4

>> A(:,1)

ans =

 1

 5

 9

Lecture 3: Computer Applications and AI-Vectors and matrices 10

Matrices Commands

 zeros(n) – returns a nxn matrix of zeros

 zeros(m,n) – returns a mxn matrix of zeros

 ones(n) – returns a nxn matrix of ones

 ones(m,n) – returns a mxn matrix of ones

 size(A) – for a mxn matrix, returns the row vector [m,n] containing the

number of rows and columns in matrix

 length(A) – returns the larger of the number of rows and columns in A

Examples:

>>a=zeros(3)

a=

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

>>a=zeros(3,2)

a=

𝟎 𝟎
𝟎 𝟎
𝟎 𝟎

Lecture 3: Computer Applications and AI-Vectors and matrices 11

>>a=ones(3)

a=

𝟏 𝟏 𝟏
𝟏 𝟏 𝟏
𝟏 𝟏 𝟏

>>a=ones(3,2)

a=

𝟏 𝟏
𝟏 𝟏
𝟏 𝟏

>>b=[2 4;5 6;8 1]

b=

𝟐 𝟒
𝟓 𝟔
𝟖 𝟏

>>size(b)

ans= 3 2

>>length(b)

ans=3

Lecture 3: Computer Applications and AI-Vectors and matrices 12

Built in Functions

>>A = [4 2 6; 5 1 3]

 A=

 4 2 6

 5 1 3

>>mean(A) % perform the mean (average) for each column

ans = 4.5000 1.5000 4.5000

>>median(A) % perform the median for each column

ans = 4.5000 1.5000 4.5000

>>sum(A) % perform the sum for each column

ans = 9 3 9

>>sort(A) % perform the ascending sort for each column

ans =

4 1 3

5 2 6

Lecture 3: Computer Applications and AI-Vectors and matrices 13

Arithmetic Operators

When generating code for the Embedded MATLAB Function block, the coder

supports the arithmetic operators (and their M-function equivalents) listed in

Table (3.1).

Table (3.1) Matrices arithmetic operators

Operation Operator Syntax
Binary addition A+B

Matrix multiplication A*B

Array wise multiplication A.*B

Matrix right division A/B

Arraywise right division A./B

Matrix left division A\B

Arraywise left division A.\B

Matrix power A^B

Arraywise power A.^B

Complex transpose A'

Matrix transpose A.'

Matrix concat [A B]

Matrix index A(r,c)

 If two matrices A and B are the same size, their (element-by-element) sum is

obtained by typing A + B.

 You can also add a scalar (a single number) to a matrix; A + c adds c to each

element in A.

 Likewise, A - B represents the difference of A and B, and A – c subtracts the

number c from each element of A.

 If A and B are multiplicatively compatible, i. e., if A is n x m and B is m x l,

then their product A* B is n x l. Recall that the element of A* B in the ith row

and jth column is the sum of the products of the elements from the ith row of

A times the elements from the jth column of B, i. e.,

Lecture 3: Computer Applications and AI-Vectors and matrices 14

 A’ represents the conjugate transpose of A. (For more information, see the

online help for ctranspose and transpose.)

Matrix Operations – Summary listed in Table (3.2)

Table (3.2) Matrix Operations – Summary

Operation Command Comment
Transpose B=A’ Exchange rows with columns

Identity matrix eye(n) Return an nxn identity matrix

eye(m.n) Return an mxn matrix with ones on the main

diagonal and zero elsewhere

Addition C=A+B

Subtraction C=A-B

Scalar Multiplication B=aA Where a is a scalar

Matrix Multiplication C=A*B

Matrix Inverse B=inv(A) A must be a square matrix

Matrix Rank C=rank(A) Return the rank of matrix A

provides an estimate of the number of linearly

independent rows or columns of a matrix A

Matrix Powers B=A.^2 Square each element in the matrix

C= A^2=A*A Compute A*A, and A must be a square matrix

Determinant det(A) A must be a square matrix

Examples:

>>a=eye(3)

a=

𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

>>a=eye(3,2)

a=

𝟏 𝟎
𝟎 𝟏
𝟎 𝟎

Lecture 3: Computer Applications and AI-Vectors and matrices 15

>>k=[2 4;5 6;8 1]

k=

𝟐 𝟒
𝟓 𝟔
𝟖 𝟏

>> c=k'

c =

 2 5 8

 4 6 1

>>b=[1 4;2 5]

b=

𝟏 𝟒
𝟐 𝟓

>>d=det(b)

d= -3

>>c=inv(b)

c=

-1.6667 1.3333

0.6667 -0.3333

det(b)=1*5-4*2

inv(b) = 1/b = b-1 = adj(b) / det(b)

 =൤
5 −4

−2 1
൨ /−3

Lecture 3: Computer Applications and AI-Vectors and matrices 16

Examples: Arithmetic operations between matrix and scalar

>>a=[2 7;0 -2]

a=

𝟐 𝟕
𝟎 −𝟐

>>z=a+3

z=

𝟓 𝟏𝟎
𝟑 𝟏

>>z=a-3

z=

−𝟏 𝟒
−𝟑 −𝟓

>>z=a*3

z=

𝟔 𝟐𝟏
𝟎 −𝟔

>>z=a/3 %unwanted

z=

0.6667 2.3333

0 -0.6667

Lecture 3: Computer Applications and AI-Vectors and matrices 17

>> z=a\3 %unwanted

Error using \

Matrix dimensions must agree.

>> z=a./3

z =

 0.6667 2.3333

 0 -0.6667

>>z=a.\3

z=

 1.5000 0.4286

 Inf -1.5000

>>z=a^3 %z=a*a*a

z =

 8 28

 0 -8

>>z=a.^3

z=

8 343

 0 -8

C= ቂ
2 7
0 −2

ቃ ∗ ቂ
2 7
0 −2

ቃ ∗ ቂ
2 7
0 −2

ቃ

 =ቂ
4 0
0 4

ቃ ∗ ቂ
2 7
0 −2

ቃ = ቂ
8 28
0 −8

ቃ

Lecture 3: Computer Applications and AI-Vectors and matrices 18

Examples: Arithmetic operations between two matrices

>>a=[2 7;0 -2]

a=

𝟐 𝟕
𝟎 −𝟐

>>b=[1 4;2 5]

b=

𝟏 𝟒
𝟐 𝟓

>>c=a+b

 c=

 3 11

 2 3

>>c=a-b

 c=

 1 3

 -2 -7

>>c=a*b

c =

 16 43

 -4 -10

>>c=a.*b

 c=

 2 28

 0 -10

C= ቂ
2 7
0 −2

ቃ ∗ ቂ
1 4
2 5

ቃ = ቂ
16 43
−4 −10

ቃ

Lecture 3: Computer Applications and AI-Vectors and matrices 19

>>c=a/b

 c=

 1.3333 0.3333

 -1.3333 0.6667

>>c=a./b

 c=

 2.0000 1.7500

 0 -0.4000

>>c=a\b

 c=

 4.0000 10.7500

 -1.0000 -2.5000

>>c=a.\b

 c=

 0.5000 0.5714

 Inf -2.5000

>> c=[a b]

c=

 2 7 1 4

 0 -2 2 5

c=a/b=a* 1/b = a*b-1 = a*inv(b) = a*adj(b) / det(b)

 =ቂ
2 7
0 −2

ቃ ∗ ൤
5 −4

−2 1
൨ /−3 = -

1

3
∗ ቂ

2 7
0 −2

ቃ ∗ ൤
5 −4

−2 1
൨

 = -
1

3
∗ ቂ

−4 −1
4 −2

ቃ=቎

4

3

1

3
−4

3

2

3

቏

c=a\b =1/a * b = a-1 *b= inv(a) *b =(adj(a) / det(a)) *b

 =(ቂ
−2 −7
0 2

ቃ /−4) * ቂ
1 4
2 5

ቃ= -
1

4
∗ ቂ

−2 −7
0 2

ቃ ∗ ቂ
1 4
2 5

ቃ

 = -
1

4
∗ ቂ

−16 −43
4 10

ቃ=቎

16

4

43

4
−4

4

−10

4

቏

Lecture 3: Computer Applications and AI-Vectors and matrices 20

The “rand” Command

Command Description Example

rand Generates a single random

number between 0 and 1

>> rand

 ans=0.2311

rand(1,n) Generates an n-element row

vector of random numbers

between 0 and 1

>>b=rand(1,4)

b=0.6068 0.4860 0.8913 0.7621

rand(n) Generates an nxn matrix with

random numbers between 0 and

1

>>b=rand(3)

b=

 0.4565 0.4447 0.9218

 0.0185 0.6154 0.7382

 0.8214 0.7919 0.1763

rand(m,n) Generates an mxn matrix with

random numbers between 0 and

1

>>c=rand(2,4)

c=

 0.4057 0.9169 0.8936 0.3529

 0.9355 0.4103 0.0.579 0.8132

Randperm(n) Generates a row vector with n

elements that are random

permutation of integers 1

through n

>>randperm(8)

 ans=8 2 7 4 3 6 5 1

The “randi” Command

Command Description Example

randi(imax) Generates a single random

number between 1 and imax

>> a=randi(15)

 a=9

randi(imax,n) Generates an nxn matrix with

random integers between 1 and

imax

>>b=randi(15,3)

b=

 4 8 11

 14 3 8

 1 15 8

randi(imax,m,n) Generates an mxn matrix with

random integers between 1 and

imax

>>c=randi(15,2,4)

c=

 1 7 8 13

 11 2 7 5

Lecture 4: Computer Applications and AI-2D Plotting 1

2D Plotting

•Another powerful feature of MatLab software is how to present data in graphical

mode.

•MatLab deals with many built-in functions that can be used to create different plot

styles.

•This lecture describes how MatLab can be used to create and format two-

dimensional plot and how plot characteristics can be changed according to the user

demand.

Lecture 4: Computer Applications and AI-2D Plotting 2

Plotting Matrices

If one of the arguments to the plot command is a matrix, matlab will use the columns

of the matrix to plot a set of lines, one line per column:

>> q = [1 1 1;2 3 4;3 5 7;4 7 10]

q =

 1 1 1

 2 3 4

 3 5 7

 4 7 10

>> plot(q)

>> grid

matlab plots the columns of the matrix q against the row index. You can also supply

an x variable:

>> x = [0 1 3 6]

x =

0 1 3 6

>> plot(x,q)

>> grid

Here the x values are not uniformly spaced, but they are the same for each column

of q. You can also plot a matrix of x values against a vector of y values (be careful:

the y values are in the vector x):

>>plot(q,x)

>>grid

Lecture 4: Computer Applications and AI-2D Plotting 3

PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector is

plotted versus the rows or columns of the matrix, whichever line up. If X is a scalar

and Y is a vector, disconnected line objects are created and plotted as discrete points

vertically at X.

PLOT(Y) plots the columns of Y versus their index. If Y is complex, PLOT(Y) is

equivalent to PLOT(real(Y), imag(Y)). In all other uses of PLOT, the imaginary part

is ignored.

plot Specifications

•The plot command has additional options that used to specify the line properties.

•Color, line style marker, axis labels, title are options those can be configured for

plotting figures.

•To make plot command works with such changes, we use:

Lecture 4: Computer Applications and AI-2D Plotting 4

Various line types, plot symbols and colors may be obtained with PLOT(X,Y,S)

where S is a character string made from one element from any or all the following 3

columns in Table (4.1).

Table (4.1): Line Specifier

Line Color Marker Type Line Style

b blue . point - solid

g green o circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

y yellow * star (none) no line

m magenta s square

w white d diamond

k black v triangle (down)

 ^ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

Notes to Be Considered

•To import specifiers inside the plot command, they have to be introduced as a string

command.

•The specifiers can be defined in any order

•The number of specifier is optional, you can make one, two or more depending on

what you need to define.

Lecture 4: Computer Applications and AI-2D Plotting 5

Example

>> plot (x, y) %plot without specifier

>> plot (x, y, ‘r’) %plot with red color specifier

>> plot (x, y, ‘- - r’, ‘^’) %plot with red, dashed-line, and marker specifier

>>plot(X,Y,'c+:') %plots a cyan dotted line with a plus at each data point

%plots blue diamond at each data point but does not draw any line.

>>plot(X,Y,'bd')

% to create a plot with a dark red line width of 2 points.

>>plot(X,Y,'LineWidth',2,'Color',[6 0 0])

xlabel, ylabel, zlabel

Each axes graphics object can have one label for the x-, y-, and z-axis. The

label appears beneath its respective axis in a two-dimensional plot and to the side or

beneath the axis in a three-dimensional plot.

>>xlabel ('string') % labels the x-axis of the current axes.

>>ylabel ('string') % labels the y-axis of the current axes.

>>zlabel ('string') % labels the z-axis of the current axes.

title

To create or modify a plot's title from a GUI, use Insert Title from the figure

menu. The title is located at the top and in the center of the axes.

>>title('string')

grid

Grid lines for 2-D and 3-D plots

>> grid on

axis

Axis scaling and appearance

>>axis([xmin xmax ymin ymax zmin zmax]) % sets the x-, y-, and z-axis limits

Lecture 4: Computer Applications and AI-2D Plotting 6

Example

x = linspace (0, 2*pi, 30); % a vector of 30 angles between 0 and 2pi

y = cos (x); % a vector of cosine function for each angle defined by x

plot (x, y, ‘r--*’) % two-dim. plot with red, dashed-line type and * marker specifier

grid on; % opens grid on the graphed background

xlabel (‘angles’) % gives a title for the x-axis

ylabel (‘the cosine’) % gives and title for the y-axis

title (‘Cosine Function') % gives a title for the whole plot.

Lecture 4: Computer Applications and AI-2D Plotting 7

Property Name and Value

•To specify the thickness of the line, the size of the marker, and the color of the

marker’s edge and fill we do the follow:

•All properties of the name and value have to be inside the plot command listed in

Table (4.2).

Table (4.2): Line and Marker Property

Property Name Description Possible Property Values

LineWidth

(or linewidth)

Specify the width of the

line

A number in units of points

(default 0.5)

MarkerSize

(or markersize)

Specify the size of the

marker

A number in units of points

MarkerEdgeColor

(Or

markeredgecolor)

Specify the color of the

marker, or the color of the

edge line for filled marker

Color specifies from the table

above, typed as string

MarkerFaceColor

(Or

markerfacecolor)

Specify the color of the

filling for filled marker

Color specifies from the table

above, typed as string

Lecture 4: Computer Applications and AI-2D Plotting 8

Example

x = linspace (0, 2*pi, 30); % a vector of 30 angles between 0 and 2pi

y = cos (x); % a vector of cosine function for each angle defined by x

% two-dimensional plot with red, dashed-line type and * marker specifier,

% and the line width = 2 and the marker size = 12

plot (x, y, ‘r--*’,’linewidth’, 2,’markersize’, 12)

grid on; % opens grid on the graphed background

xlabel (‘angles’) % gives a title for the x-axis

ylabel (‘the cosine’) % gives and title for the y-axis

title (‘Cosine Function’) % gives a title for the whole plot.

Lecture 4: Computer Applications and AI-2D Plotting 9

Example

x = -pi:pi/10:pi;

y = tan(sin(x)) - sin(tan(x));

plot(x,y,'--rs','LineWidth',2,'MarkerEdgeColor','k', ‘MarkerFaceColor','g','MarkerSize',10)

Example

x = -pi:pi/10:pi;

y = sin(x) ;

plot(x,y,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g',...

'MarkerSize',10)

Lecture 4: Computer Applications and AI-2D Plotting 10

Example

To plot the quadratic x2+7x−3 from x equals −3 to 3 in steps of 0.2 we use the code

x = -3:0.2:3;

y = x.ˆ2+7*x-3;

plot(x,y)

Example

x = 0:0.2:pi; % Create x-array

y = sin(x); % Create y-array

plot(x,y,’k:o’) % Plot x-y points with specified color

 % and symbol (’k’ = black, ’o’ = circles)

grid on % Display coordinate grid

xlabel(’x’) % Display label for x-axis

ylabel(’y’) % Display label for y-axis

Example

% A script file that creates a plot of the function: 3.5.^(-0.5*x).*cos(6x)

x=[-2:0.01:4];

y=3.5.^(-0.5*x).*cos(6*x);

plot(x,y)

Polar plot

•polar plot used to plot a point identified by its value and the rotating angle as

follow:

Example

x = linspace(pi,4*pi,100);

y = 3.*sin(0.5*x)+3.*x.^3;

polar(x,y)

Lecture 4: Computer Applications and AI-2D Plotting 11

Example

Single Series of Data

This example plots a bell-shaped curve as a bar graph and sets the colors of the bars

to red.

x = -2.9:0.2:2.9;

bar(x,exp(-x.*x),'r')

Example

x = [02 04 06 08 10 12 14 16 18 20 22 24];

y = 35*rand(1,12)+5;

bar(x,y,'m')

xlabel('Times of the day')

ylabel('Traffic')

title('Random Traffic Generation')

Example

x = [02 04 06 08 10 12 14 16 18 20 22 24];

y = 35*rand(1,12)+5;

barh(x,y,'b')

xlabel('Times of the day')

 ylabel('Traffic')

 title('Random Traffic Generation')

Example

x = [02 04 06 08 10 12 14 16 18 20 22 24];

y = 35*rand(1,12)+5;

stairs(x,y,'k');

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lecture 4: Computer Applications and AI-2D Plotting 12

xlabel('Times of the day')

 ylabel('Traffic')

 title('Random Traffic Generation')

Example

x = [02 04 06 08 10 12 14 16 18 20 22 24];

y = 35*rand(1,12)+5;

stem(x,y,'r')

xlabel('Times of the day')

 ylabel('Traffic')

title('Random Traffic Generation')

Example

x = [02 04 06 08 10 12 14 16 18 20 22 24];

y = 35*rand(1,12)+5;

pie(y)

xlabel('Times of the day')

 ylabel('Traffic')

 title('Random Traffic Generation')

Example

x = [02 04 06 08 10 12 14 16 18 20 22 24];

y = 35*rand(1,12)+5;

hist(y)

xlabel('Times of the day')

ylabel('Traffic')

title('Random Traffic Generation')

Lecture 4: Computer Applications and AI-2D Plotting 13

x =1:7;

histogram(x)

x =1:7;

y=7:-1:1;

area(x)

x =randperm(50);

y=randperm(50);

scatter(x,y)

x =randperm(50);

y=randperm(50);

scatter(x,y,5,'filled')

Lecture 5: Computer Applications and AI-3D Plotting 1

3D Plotting

plot3

The plot3 function displays a three-dimensional plot of a set of data points.

 plot3(X1,Y1,Z1)

Examples

Plot a three-dimensional helix.

t = 0:pi/50:10*pi;

plot3(sin(t),cos(t),t)

grid on

axis square

Plotting Matrix Data

If the arguments to plot3 are matrices of the same size, lines obtained from the

columns of X, Y, and Z are plotted. For example:

[X,Y] = meshgrid([-2:0.1:2]);

Z = X.*exp(-X.^2-Y.^2);

plot3(X,Y,Z)

grid on

Lecture 5: Computer Applications and AI-3D Plotting 2

Command Description

meshgrid Cartesian grid in 2-D/ 3-D space

[X,Y] = meshgrid(xgv,ygv) replicates the grid vectors xgv and

ygv to produce the coordinates of a rectangular grid (X, Y). The

grid vector xgv is replicated numel(ygv) times to form the

columns of X. The grid vector ygv is replicated numel(xgv) times

to form the rows of Y.

[X,Y] = meshgrid(gv) is equivalent to [X,Y] = meshgrid(gv,gv)

peaks is a function of two variables, obtained by translating and scaling

Gaussian distributions, which is useful for demonstrating mesh,

surf, pcolor, contour, etc.

colormap hsv colormap is a function that sets the Colormap property of a

figure.

An hsv colormap varies the hue component of the hue-saturation-

value color model. The colors begin with red, pass through

yellow, green, cyan, blue, magenta, and return to red. The map

is particularly useful for displaying periodic functions.

You can use bone; colorcube; cool; copper; flag; gray; hot; Jet;

lines; pink; prism; white; autumn; spring; summer; or winter

instead of hsv

Lecture 5: Computer Applications and AI-3D Plotting 3

Mesh

mesh, meshc, and meshz create wireframe parametric surfaces specified by X, Y,

and Z, with color specified by C.

A mesh is drawn as a surface graphics object with the viewpoint specified by

view(3). The face color is the same as the background color (to simulate a wireframe

with hidden-surface elimination), or none when drawing a standard see-through

wireframe. The current colormap determines the edge color. The hidden command

controls the simulation of hidden-surface elimination in the mesh, and the shading

command controls the shading model.

Example

Produce a combination mesh and contour plot of the peaks surface:

[X,Y] = meshgrid(-3:.125:3);

Z = peaks(X,Y);

meshc(X,Y,Z);

axis([-3 3 -3 3 -10 5])

Example

Generate the curtain plot for the peaks function:

[X,Y] = meshgrid(-3:.125:3);

Z = peaks(X,Y);

meshz(X,Y,Z)

Lecture 5: Computer Applications and AI-3D Plotting 4

Example

surf, surfc

3-D shaded surface plot

surf(X,Y,Z,C) creates a shaded surface, with color defined by C. MATLAB

performs a linear transformation on this data to obtain colors from the current

colormap.

Example

Display a surface plot and contour plot of the peaks surface.

[X,Y,Z] = peaks(30);

surfc(X,Y,Z)

colormap hsv

axis([-3 3 -3 3 -10 10])

pie3

pie3(X) draws a three-dimensional pie chart using the data in X. Each element in X

is represented as a slice in the pie chart.

pie3(X,explode) specifies whether to offset a slice from the center of the pie chart.

X(i,j) is offset from the center of the pie chart if explode(i,j) is nonzero. explode

must be the same size as X.

Example

Offset a slice in the pie chart by setting the

corresponding explode element to 1:

x = [1 3 0.5 2.5 2];

explode = [0 1 0 0 0];

pie3(x,explode)

colormap hsv

28%

6%

22%

33%

11%

jar:file:///C:/Program%20Files/MATLAB/R2009a/help/techdoc/help.jar%21/ref/peaks.html

Lecture 5: Computer Applications and AI-3D Plotting 5

Multiple Figure Windows

When plot or any other command that generates a plot is executed, the Figure

Window opens (if not already open) and displays the plot. MATLAB labels the

Figure Window as Figure 1. If the Figure Window is already open when the plot or

any other command that generates a plot is executed, a new plot is displayed in the

Figure Window (replacing the existing plot). Commands that format plots are

applied to the plot in the Figure Window that is open. It is possible, however, to open

additional Figure Windows and have several of them open (with plots) at the same

time. This is done by typing the command figure. Every time the command figure is

entered, MATLAB opens a new Figure Window. If a command that creates a plot is

entered after a figure command, MATLAB generates and displays the new plot in

the last Figure Window that was opened, which is called the active or current

window.

Example

Write a program to draw the following on multiple windows:

The 1st window includes cake chart contain the slices 1 4 3 2 and cut the 3rd slice.

While the 2nd window draws full blue rectangle where -2 ≤ x ≤ 2 in step of 0.2 and

the y is equal to x powered by 2.

x = [1 4 3 2];

explode = [0 0 1 0];

pie3(x,explode)

colormap hsv

figure

x = -2:0.2:2;

bar(x,x.^2,'b')

Lecture 5: Computer Applications and AI-3D Plotting 6

Putting Multiple Plots On The Same Page

Multiple plots can be created on the same page with the subplot command,

which has the form:

subplot(m,n,p)

The command divides the Figure Window (and the page when printed) into

(m × n) rectangular subplots. The subplots are arranged like elements in an m × n

matrix where each element is a subplot. The subplots are numbered from 1 through.

The upper left subplot is numbered 1 and the lower right subplot is numbered. The

numbers increase from left to right within a row, from the first row to the last. The

command subplot(m,n,p) makes the subplot p current. This means that the next plot

command (and any formatting commands) will create a plot (with the corresponding

format) in this subplot. For example, the command subplot(3,2,1) creates six areas

arranged in three rows and two columns as shown, and makes the upper left subplot

current.

Example

Write a program to draw the following on the same window:

first draw cake chart contain the slices 1 4 3 2 and cut the 3rd slice.

then draw full blue rectangle where -2 ≤ x ≤ 2 in step of 0.2 and the y is equal to x

powered by 2.

subplot(2,1,1)

x = [1 4 3 2];

explode = [0 0 1 0];

pie3(x,explode)

colormap hsv

subplot(2,1,2)

x = -2:0.2:2;

bar(x,x.^2,'b')

Lecture 6: Computer Applications and AI-Conditional Statement 1

Conditional Statements

The if-elseif-else-end Structure

A conditional statement is a command that allows MATLAB to make a

decision of whether to execute a group of commands that follow the conditional

statement, or to skip these commands. In a conditional statement a conditional

expression is stated. If the expression is true, a group of commands that follow the

statement are executed. If the expression is false, the computer skips the group. The

basic form of a conditional statement is if conditional expression consisting of

relational operators (<;<=;>;>=;==;~=) and/or logical operators (&;|).

Examples:
if a < b

if c >= 5

if a == b

if a ~= 0

if (d<h)&(x>7)

if (x~=13)|(y<0)

See also Table (6.1)

Table (6.1): Some MATLAB if Representation

Mathematical Representation MATLAB Representation

x in [2..7] If (x>=2) & (x<=7)

x in (2..7) If (x>2) & (x<7)

x in [2..7) If (x>=2) & (x<7)

x in (2..7] If (x>2) & (x<=7)

2 ≤ x ≤ 7 If (x>=2) & (x<=7)

7 ≥ x ≥ 2 If (x>=2) & (x<=7)

The if-elseif-else-end structure is shown in Fig (6.1). The figure shows how

the commands are typed in the program, and gives a flowchart that illustrates the

flow, or the sequence, in which the commands are executed. This structure includes

Lecture 6: Computer Applications and AI-Conditional Statement 2

two conditional statements (if and elseif) that make it possible to select one out of

three groups of commands for execution. The first line is an if statement with a

conditional expression. If the conditional expression is true, the program executes

group 1 of commands between the if and the elseif statements and then skips to the

end. If the conditional expression in the if statement is false, the program skips to

the elseif statement. If the conditional expression in the elseif statement is true, the

program executes group 2 of commands between the elseif and the else and then

skips to the end. If the conditional expression in the elseif statement is false, the

program skips to the else and executes group 3 of commands between the else and

the end. It should be pointed out here that several elseif statements and associated

groups of commands can be added.

 In this way more conditions can be included. Also, the else statement is

optional. This means that in the case of several elseif statements and no else

statement, if any of the conditional statements is true the associated commands are

executed; otherwise nothing is executed.

Fig (6.1): if-elseif-else-end structure

Lecture 6: Computer Applications and AI-Conditional Statement 3

Example

Write a program to check the number when it is even or odd.

n=input('Enter the value of number: ');

if (mod(n,2)==0)

 disp(‘even number’)

else

 disp(‘odd number’)

end

% The run of the program

>> test

Enter the value of number: 6

even number

% Another run of the program

>> test

Enter the value of number: 3

odd number

Lecture 6: Computer Applications and AI-Conditional Statement 4

Example

Write a program to check the number when it is positive; negative; or zero.

n=input('Enter the value of number: ');

if (n>0)

 disp(‘Positive number’)

elseif (n<0)

 disp(‘Negative number’)

else

 disp(‘Zero’)

end

% The run of program

>> test

Enter the value of number: 6

Positive number

% Another run of program

>> test

Enter the value of number: 0

Zero

% Another run of program

>> test

Enter the value of number: -5

Negative number

Lecture 6: Computer Applications and AI-Conditional Statement 5

Example

Write a program to do the following:

1-When the user enters number in [2..6] draw three-dimensional helix when angle

changed from 0 to 10pi in steps of pi/50

2- When the user enters number equal 8 or 10 calculate the speed of the wave

3- When the user enters number equal 12 Welcome appeared on the screen.

 n=input('Enter the value of number: ');

if (n>=2) & (n<=6)

 t = 0:pi/50:10*pi;

 plot3(sin(t),cos(t),t)

 grid on

 axis square

elseif (n==8) | (n==10)

 x=input('Enter wavelength: ');

 y=input('Enter frequency: ');

 speed=x*y;

 fprintf('Wave speed= %f\n',speed)

elseif (n==12)

 disp('Welcome')

end

Lecture 6: Computer Applications and AI-Conditional Statement 6

 % The run of program

>> test

Enter the value of number: 3

% Another run of program

>> test

Enter the value of number: 8

Enter wavelength: 5

Enter frequency: 4

Wave speed= 20.000000

% Another run of program

>> test

Enter the value of number: 12

Welcome

Lecture 6: Computer Applications and AI-Conditional Statement 7

Example

Display the type of radiation according to the value of frequency

f=input('Enter the value of Frequency (Hz): ');

if (f>=10) & (f<1e8)

 disp('Radio Waves')

elseif (f>=1e8) & (f<1e11)

 disp('MicroWave')

elseif (f>=1e11) & (f<1e14)

 disp('Infrared')

Lecture 6: Computer Applications and AI-Conditional Statement 8

elseif (f>=1e14) & (f<1e15)

 disp('Visible')

elseif (f>=1e15) & (f<1e17)

 disp('UltraViolet')

elseif (f>=1e17) & (f<1e20)

 disp('X rays')

elseif (f>=1e20) & (f<1e25)

 disp('Gamma rays')

end

% The run of program

>> test

Enter the value of Frequency (Hz): 1e5

Radio Waves

% Another run of program

>> test

Enter the value of Frequency (Hz): 1e16

UltraViolet

% Another run of program

>> test

Enter the value of Frequency (Hz): 1e22

Gamma rays

Lecture 6: Computer Applications and AI-Conditional Statement 9

The switch-case Statement

The switch-case statement is another method that can be used to direct the

flow of a program. It provides a means for choosing one group of commands for

execution out of several possible groups.

• The first line is the switch command, which has the form

switch switch expression

The switch expression can be a scalar or a string. Usually it is a variable that

has an assigned scalar or a string. It can also be, however, a mathematical expression

that includes pre-assigned variables and can be evaluated.

• Following the switch command are one or several case commands. Each has a

value (can be a scalar or a string) next to it (value1, value2, etc.) and an associated

group of commands below it.

• After the last case command there is an optional otherwise command followed by

a group of commands.

• The last line must be an end statement.

The value of the switch expression in the switch command is compared with

the values that are next to each of the case statements. If a match is found, the group

of commands that follow the case statement with the match are executed. (Only one

group of commands—the one between the case that matches and either the case,

otherwise, or end statement that is next—is executed). As shown in Fig (6.2).

Lecture 6: Computer Applications and AI-Conditional Statement 10

Fig (6.2): Switch structure

• If there is more than one match, only the first matching case is executed.

• If no match is found and the otherwise statement (which is optional) is present, the

group of commands between otherwise and end is executed.

• If no match is found and the otherwise statement is not present, none of the

command groups is executed.

• A case statement can have more than one value. This is done by typing the values

in the form: {value1, value2, value3, ...}. (This form, which is not covered in this

book, is called a cell array.) The case is executed if at least one of the values

matches the value of switch expression.

Lecture 6: Computer Applications and AI-Conditional Statement 11

Example

Write a program to do the following:

1-When the user enters H to draw three-dimensional helix when angle changed from

0 to 10pi in steps of pi/50

2- When the user enters S calculate the speed of the wave

3- When the user enters A, Welcome appeared on the screen.

ch=input('Enter H to draw helix, enter S to calculate the speed of the wave,

enter A to show welcome on the screen: ','s');

switch ch

case 'H'

 t = 0:pi/50:10*pi;

 plot3(sin(t),cos(t),t)

 grid on

 axis square

case 'S'

 x=input('Enter wavelength: ');

 y=input('Enter frequency: ');

 speed=x*y;

 fprintf('Wave speed= %f\n',speed)

case 'A'

 disp('Welcome')

end

Lecture 6: Computer Applications and AI-Conditional Statement 12

% The run of program

>> test

Enter H to draw helix, enter S to calculate the speed of the wave, enter A to

show welcome on the screen: W

% Another run of program

>> test

Enter H to draw helix, enter S to calculate the speed of the wave, enter

A to show welcome on the screen: S

Enter wavelength: 5

Enter frequency: 4

Wave speed= 20.000000

% Another run of program

>> test

Enter H to draw helix, enter S to calculate the speed of the wave, enter

A to show welcome on the screen: A

Welcome

Lecture 6: Computer Applications and AI-Conditional Statement 13

Example

Write a program to do the following:

1-When the user enters 1 draw three-dimensional helix when angle changed from 0

to 10pi in steps of pi/50

2- When the user enters 2 calculate the speed of the wave

3- When the user enters 3, Welcome appeared on the screen.

n=input('Enter 1 to draw helix, enter 2 to calculate the speed of the wave, enter

3 to show welcome on the screen: ');

switch n

case 1

 t = 0:pi/50:10*pi;

 plot3(sin(t),cos(t),t)

 grid on

 axis square

case 2

 x=input('Enter wavelength: ');

 y=input('Enter frequency: ');

 speed=x*y;

 fprintf('Wave speed= %3.4f\n',speed)

case 3

 disp('Welcome')

end

Lecture 6: Computer Applications and AI-Conditional Statement 14

% The run of program

>> test

Enter 1 to draw helix, enter 2 to calculate the speed of the wave, enter 3 to

show welcome on the screen: 1

% Another run of program

>> test

Enter 1 to draw helix, enter 2 to calculate the speed of the wave, enter 3 to

show welcome on the screen: 2

Enter wavelength: 5

Enter frequency: 4

Wave speed= 20.0000

% Another run of program

>> test

Enter 1 to draw helix, enter 2 to calculate the speed of the wave, enter 3 to

show welcome on the screen: 3

Welcome

Lecture 7: Computer Applications and AI-Loop 1

Loop

A loop is another method to alter the flow of a computer program. In a loop,

the execution of a command, or a group of commands, is repeated several times

consecutively. Each round of execution is called a pass. In each pass at least one

variable, but usually more than one, or even all the variables that are defined within

the loop, are assigned new values. MATLAB has two kinds of loops. In for-end

loops the number of passes is specified when the loop starts. In while-end loops the

number of passes is not known ahead of time, and the looping process continues

until a specified condition is satisfied.

for-end Loops

 In for-end loops the execution of a command, or a group of commands, is repeated

a predetermined number of times. The form of a loop is shown in Fig (7.1).

• The loop index variable can have any variable name (usually i, j, k, m, and n are

used, however, i and j should not be used if MATLAB is used with complex

numbers).

Fig (7.1): for-end loop

• In the first pass k = f and the computer executes the commands between the for and

end commands. Then, the program goes back to the for command for the second

pass. k obtains a new value equal to k = f + s, and the commands between the for

Lecture 7: Computer Applications and AI-Loop 2

and end commands are executed with the new value of k. The process repeats itself

until the last pass, where k = t. Then the program does not go back to the for, but

continues with the commands that follow the end command. For example, if k =

1:2:9, there are five loops, and the corresponding values of k are 1, 3, 5, 7, and 9.

• The increment s can be negative (i.e.; k = 25:–5:10 produces four passes with

k = 25, 20, 15, 10).

• If the increment value s is omitted, the value is 1 (default) (i.e.; k = 3:7 produces

five passes with k = 3, 4, 5, 6, 7).

• If f = t, the loop is executed once.

• If f > t and s > 0, or if f < t and s < 0, the loop is not executed.

• If the values of k, s, and t are such that k cannot be equal to t, then if s is positive,

the last pass is the one where k has the largest value that is smaller than t (i.e.,

k = 8:10:50 produces five passes with k = 8, 18, 28, 38, 48). If s is negative, the last

pass is the one where k has the smallest value that is larger than t.

• In the for command k can also be assigned a specific value (typed as a vector).

Example: for k = [7 9 –1 3 3 5].

• The value of k should not be redefined within the loop.

• Each for command in a program must have an end command.

• The value of the loop index variable (k) is not displayed automatically. It is possible

to display the value in each pass (which is sometimes useful for debugging) by

typing k as one of the commands in the loop.

Lecture 7: Computer Applications and AI-Loop 3

• When the loop ends, the loop index variable (k) has the value that was last assigned

to it. A simple example of a for-end loop (in a script file) is:

for k=1:3:10

 x = k^2

end

When this program is executed, the loop is executed four times. The value of

k in the four passes is k = 1, 4, 7, and 10, which means that the values that are

assigned to x in the passes are x = 1, 16, 49, and 100, respectively. Since a semicolon

is not typed at the end of the second line, the value of x is displayed in the Command

Window at each pass. When the script file is executed, the display in the Command

Window is:

x = 1

x = 16

x = 49

x = 100

Example: Sum of a series

Use a for-end loop in a script file to calculate the sum of the first n terms of the

series:

Solution

n=input('Enter number of terms: ');

s=0;

for k=1:n

 s=s+(-1)^k*k/2^k;

end

fprintf('The sum of the series is: %f\n',s)

% The run of program

>> test

Enter number of terms: 3

The sum of the series is: -0.375000

Lecture 7: Computer Applications and AI-Loop 4

Example

Calculate the series 𝒔𝒖𝒎 = 𝟓 −
𝟑!

𝒙𝟑
−

𝟓!

𝒙𝟓
−

𝟕!

𝒙𝟕

x=input('Enter x: ');

sum=5;

for i=3:2:7

 sum=sum- factorial(i)/ x^i;

end

fprintf('Sum= %f',sum)

% The run of program

>> test

Enter x: 2

Sum= -38.875000

Example

calculate the series 𝒔𝒖𝒎 = 𝟖 +
𝟓

𝒙𝟐
+

𝟏𝟎

𝒙𝟒
+

𝟏𝟓

𝒙𝟖

x=input('Enter x: ');

sum=8;

j=2;

for i=5:5:15

 sum=sum+i/x^j;

 j=j*2;

end

fprintf('Sum= %f\n',sum)

% The run of program

>> test

Enter x: 3

Sum= 8.681299

Lecture 7: Computer Applications and AI-Loop 5

Example

calculate the series 𝒔𝒖𝒎 = 𝟖 −
𝟓

𝒙𝟐
+

𝟏𝟎

𝒙𝟒
−

𝟏𝟓

𝒙𝟖

x=input('Enter x: ');

sum=8;

j=2;

s=-1;

for i=5:5:15

 sum=sum+s* i/x^j;

 j=j*2;

s=-s;

end

fprintf('Sum= %f\n',sum)

% The run of program

>> test

Enter x: 3

Sum= 7.565615

Lecture 7: Computer Applications and AI-Loop 6

while-end Loops

while-end loops are used in situations when looping is needed but the number of

passes is not known in advance. In while-end loops the number of passes is not

specified when the looping process starts. Instead, the looping process continues

until a stated condition is satisfied. The structure of a while-end loop is shown in

Fig (7.2).

Fig (7.2): while-end loop

The first line is a while statement that includes a conditional expression. When

the program reaches this line the conditional expression is checked. If it is false (0),

MATLAB skips to the end statement and continues with the program. If the

conditional expression is true (1), MATLAB executes the group of commands that

follow between the while and end commands. Then MATLAB jumps back to the

while command and checks the conditional expression. This looping process

continues until the conditional expression is false.

Example Taylor series representation of a function

The function can be represented in a Taylor series by

Write a program in a script file that determines by using the Taylor series

representation. The program calculates by adding terms of the series and

Lecture 7: Computer Applications and AI-Loop 7

stopping when the absolute value of the term that was added last is smaller than

0.0001.Use a while-end loop, but limit the number of passes to 30. If in the 30th pass

the value of the term that is added is not smaller than 0.0001, the program stops and

displays a message that more than 30 terms are needed.

Use the program to calculate

Solution

The first few terms of the Taylor series are:

 A program that uses the series to calculate the function is shown next. The

program asks the user to enter the value of x. Then the first term, an, is assigned the

number 1, and an is assigned to the sum S. Then, from the second term on, the

program uses a while loop to calculate the nth term of the series and add it to the

sum. The program also counts the number of terms n. The conditional expression in

the while command is true as long as the absolute value of the nth an term is larger

than 0.0001, and the number of passes n is smaller than 30. This means that if the

30th term is not smaller than 0.0001, the looping stops.

x=input('Enter x: ');

n=1; an=1; s=an;

while abs(an) >= 0.0001 & n <= 30

 an=x^n/factorial(n);

 s=s+an;

 n=n+1;

end

if n >= 30

 disp('More than 30 terms are needed')

else

 fprintf('exp(%3.4f) = %3.4f',x,s)

 fprintf('\nThe number of terms used is: %i\n',n)

end

Lecture 7: Computer Applications and AI-Loop 8

% The run of program

>> test

Enter x: 4

exp(4.0000) = 54.5981

The number of terms used is: 18

Lecture 8: Computer Applications and AI-Signal Processing 1

Signal Processing

In information theory, a signal is a codified message, that is, the sequence of states

in a communication channel that encodes a message. In a communication system, a

transmitter encodes a message to create a signal, which is carried to a receiver by the

communication channel.

Signal processing involves converting or transforming data in a way that allows us

to see things in it that are not possible via direct observation. Signal processing allows

engineers and scientists to analyze, optimize, and correct signals, including scientific

data, audio streams, images, and video.

Fast Fourier Transform (FFT)

A Fast Fourier Transform (FFT) is a highly optimized implementation of the discrete

Fourier transform (DFT), which convert discrete signals from the time domain to the

frequency domain. FFT computations provide information about the frequency content,

phase, and other properties of the signal.

Blue whale moan audio signal decomposed into its frequency components using FFT.

https://www.mathworks.com/discovery/fft/_jcr_content/mainParsys/image.adapt.full.medium.jpg/1720440985830.jpg
https://www.mathworks.com/discovery/fft/_jcr_content/mainParsys/image.adapt.full.medium.jpg/1720440985830.jpg

Lecture 8: Computer Applications and AI-Signal Processing 2

A wave is a disturbance that travels or propagates from the place where it was created.

Wavelength: The distance travelled by a wave in one complete oscillation is called as

wavelength. The SI unit of wavelength is meter (m) and it is denoted by a Greek letter

lambda (λ).

Frequency: The number of oscillations completed in one second is called as frequency of

a wave. Frequency can also be described as the number of waves that pass a point in one

second. f = 1 / t

Amplitude: distance between the resting position and the maximum displacement of the

wave.

Displacement: is defined as the change in position of an object. It is a vector quantity and

has a direction and magnitude.

The magnitude of displacement is defined as the shortest distance between the initial and

final position of the object. For a particle in motion, the magnitude is either less than or

equal to the distance travelled.

Period: time it takes for one wave cycle to complete.

Fourier Transforms

The Fourier transform is a mathematical formula that transforms a signal sampled in time

or space to the same signal sampled in temporal or spatial frequency. In signal processing,

the Fourier transform can reveal important characteristics of a signal, namely, its

frequency components.

Lecture 8: Computer Applications and AI-Signal Processing 3

The Fourier transform is defined for a vector x with n uniformly sampled points by

yk+1=
n−1∑j=0

ωjkxj+1.

ω=e−2πi/n is one of the n complex roots of unity where i is the imaginary unit.

For x and y, the indices j and k range from 0 to n−1.

The fft function in MATLAB® uses a fast Fourier transform algorithm to compute the

Fourier transform of data. Consider a sinusoidal signal x that is a function of time t with

frequency components of 15 Hz and 20 Hz. Use a time vector sampled in increments of

1/50 seconds over a period of 10 seconds.

x = A sin (ωt + ϕ) or x = A cos (ωt + ϕ)

Here,

 x = displacement of wave (meter)
 A = amplitude

 ω = angular frequency (rad/s)

 t = time period

 ϕ = phase angle

Ts = 1/50;

t = 0:Ts:10-Ts;

x = sin(2*pi*15*t) + sin(2*pi*20*t);

plot(t,x)

xlabel('Time (seconds)')

ylabel('Amplitude')

https://www.cuemath.com/measurement/time/
https://www.cuemath.com/geometry/angles/

Lecture 8: Computer Applications and AI-Signal Processing 4

Compute the Fourier transform of the signal, and create the vector f that corresponds to

the signal's sampling in frequency space.

Ts = 1/50;

t = 0:Ts:10-Ts;

x = sin(2*pi*15*t) + sin(2*pi*20*t);

y = fft(x); %computes the discrete Fourier transform (DFT) of X

fs = 1/Ts;

f = (0:length(y)-1)*fs/length(y); %returns the size of the longest dimension of vector

plot(f,abs(y)) %Plot the magnitude of the transformed signal as a function of frequency.

xlabel('Frequency (Hz)')

ylabel('Magnitude')

title('Magnitude')

The plot shows four frequency peaks, although the signal is expected to have two

frequency peaks at 15 Hz and 20 Hz. Here, the second half of the plot is the mirror

reflection of the first half. The discrete Fourier transform of a time-domain signal has a

periodic nature, where the first half of its spectrum is in the positive frequencies and the

second half is in the negative frequencies. The 30 Hz and 35 Hz frequency components in

Lecture 8: Computer Applications and AI-Signal Processing 5

the plot correspond to the –20 Hz and –15 frequency components. To better visualize this

periodicity, you can use the fft shift function, which performs a zero-centered, circular

shift on the transform.

Ts = 1/50;

t = 0:Ts:10-Ts;

x = sin(2*pi*15*t) + sin(2*pi*20*t);

y = fft(x);

fs = 1/Ts;

n = length(y);

fshift = (-n/2:n/2-1)*(fs/n);

% fftshift(y) rearranges a Fourier transform X by shifting

%the zero-frequency component to the center of the array.

yshift = fftshift(y);

plot(fshift,abs(yshift))

xlabel('Frequency (Hz)')

ylabel('Magnitude')

Lecture 8: Computer Applications and AI-Signal Processing 6

Noisy Signals

In scientific applications, signals are often corrupted with random noise, disguising their

frequency components. The Fourier transform can process out random noise and reveal

the frequencies. For example, create a new signal, xnoise, by injecting Gaussian noise into

the original signal, x.

%Rng function controls the global stream, which determines how the rand, randi, randn, and

%randperm functions produce a sequence of random numbers.

rng('default')

xnoise = x + 2.5*randn(size(t)); % returns a random scalar drawn from the standard normal distribution.

Signal power as a function of frequency is a common metric used in signal processing.

Power is the squared magnitude of a signal's Fourier transform, normalized by the number

of frequency samples. Compute and plot the power spectrum of the noisy signal centered

at the zero frequency. Despite noise, you can still make out the signal's frequencies due to

the spikes in power.

Ts = 1/50;

t = 0:Ts:10-Ts;

x = sin(2*pi*15*t) + sin(2*pi*20*t);

fs = 1/Ts;

n = length(x);

fshift = (-n/2:n/2-1)*(fs/n);

rng('default')

xnoise = x + 2.5*randn(size(t));

ynoise = fft(xnoise);

Lecture 8: Computer Applications and AI-Signal Processing 7

ynoiseshift = fftshift(ynoise);

power = abs(ynoiseshift).^2/n;

plot(fshift,power)

title('Power')

xlabel('Frequency (Hz)')

ylabel('Power')

Phase of Sinusoids

Using the Fourier transform, you can also extract the phase spectrum of the original signal.

For example, create a signal that consists of two sinusoids of frequencies 15 Hz and 40

Hz. The first sinusoid is a cosine wave with phase −π/4, and the second is a cosine wave

with phase π/2. Sample the signal at 100 Hz for 1 second.

fs = 100;

t = 0:1/fs:1-1/fs;

x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t);

%Compute the Fourier transform of the signal. Plot the magnitude of the transform as a

%function of frequency.

y = fft(x);

z = fftshift(y);

ly = length(y);

f = (-ly/2:ly/2-1)/ly*fs;

stem(f,abs(z))

xlabel('Frequency (Hz) ')

ylabel('|y|')

grid

Lecture 8: Computer Applications and AI-Signal Processing 8

Compute the phase of the transform, removing small-magnitude transform values. Plot

the phase as a function of frequency.

fs = 100;

t = 0:1/fs:1-1/fs;

x = cos(2*pi*15*t - pi/4) - sin(2*pi*40*t);

y = fft(x);

z = fftshift(y);

ly = length(y);

f = (-ly/2:ly/2-1)/ly*fs;

tol = 1e-6;

z(abs(z) < tol) = 0;

theta = angle(z); % returns the phase angle in the interval [-π,π]

stem(f,theta/pi)

xlabel('Frequency (Hz)')

ylabel('Phase / \pi')

grid

Lecture 8: Computer Applications and AI-Signal Processing 9

Popular FFT algorithms include the Cooley-Tukey algorithm, prime factor FFT algorithm,

and Rader’s FFT algorithm. The most commonly used FFT algorithm is the Cooley-Tukey

algorithm, which reduces a large Discrete Fourier Transform DFT into smaller DFTs to

increase computation speed and reduce complexity. FFT has applications in many fields.

Signal Processing Filtering

In signal processing, a filter is a device or process that removes some unwanted

components or features from a signal. Filtering is a class of signal processing, the defining

feature of filters being the complete or partial suppression of some aspect of the signal.

Most often, this means removing some frequencies or frequency bands. However, filters

do not exclusively act in the frequency domain; especially in the field of image

processing many other targets for filtering exist. Correlations can be removed for certain

frequency components and not for others without having to act in the frequency domain.

Filters are widely used in electronics and telecommunication, in radio, television, audio

recording, radar, control systems, music synthesis, image processing, computer graphics,

and structural dynamics.

There are many different bases of classifying filters and these overlap in many different

ways; there is no simple hierarchical classification. Filters may be:

 non-linear or linear

 time-variant or time-invariant, also known as shift invariance. If the filter operates in

a spatial domain then the characterization is space invariance.

 causal or non-causal: A filter is non-causal if its present output depends on future

input. Filters processing time-domain signals in real time must be causal, but not filters

acting on spatial domain signals or deferred-time processing of time-domain signals.

 analog or digital

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_(electronics)
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Television
https://en.wikipedia.org/wiki/Audio_recording
https://en.wikipedia.org/wiki/Audio_recording
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Control_system
https://en.wikipedia.org/wiki/Music_synthesis
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Structural_dynamics
https://en.wikipedia.org/wiki/Non-linear_filter
https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/Time-variant_system
https://en.wikipedia.org/wiki/Time-invariant_system
https://en.wikipedia.org/wiki/Causal
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/Analogue_filter
https://en.wikipedia.org/wiki/Digital_filter

Lecture 8: Computer Applications and AI-Signal Processing 10

 discrete-time (sampled) or continuous-time

 passive or active type of continuous-time filter

 infinite impulse response (IIR) or finite impulse response (FIR) type of discrete-time

or digital filter.

Linear continuous-time filters

Linear continuous-time circuit is perhaps the most common meaning for filter in the

signal processing world, and simply "filter" is often taken to be synonymous. These

circuits are generally designed to remove certain frequencies and allow others to pass.

Circuits that perform this function are generally linear in their response, or at least

approximately so. Any nonlinearity would potentially result in the output signal

containing frequency components not present in the input signal.

The modern design methodology for linear continuous-time filters is called network

synthesis. Some important filter families designed in this way are:

 Chebyshev filter, has the best approximation to the ideal response of any filter for a

specified order and ripple.

 Butterworth filter, has a maximally flat frequency response.

 Bessel filter, has a maximally flat phase delay.

 Elliptic filter, has the steepest cutoff of any filter for a specified order and ripple.

The difference between these filter families is that they all use a different polynomial

function to approximate to the ideal filter response. This results in each having a

different transfer function.

Another older, less-used methodology is the image parameter method. Filters

designed by this methodology are archaically called "wave filters". Some important

filters designed by this method are:

https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Continuous_signal
https://en.wikipedia.org/wiki/Passive_component
https://en.wikipedia.org/wiki/Active_filter
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Filter_design
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/Network_synthesis_filters
https://en.wikipedia.org/wiki/Network_synthesis_filters
https://en.wikipedia.org/wiki/Chebyshev_filter
https://en.wikipedia.org/wiki/Butterworth_filter
https://en.wikipedia.org/wiki/Bessel_filter
https://en.wikipedia.org/wiki/Phase_delay
https://en.wikipedia.org/wiki/Elliptic_filter
https://en.wikipedia.org/wiki/Polynomial_function
https://en.wikipedia.org/wiki/Polynomial_function
https://en.wikipedia.org/wiki/Ideal_filter
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Composite_image_filter

Lecture 8: Computer Applications and AI-Signal Processing 11

 Constant k filter, the original and simplest form of wave filter.

 m-derived filter, a modification of the constant k with improved cutoff steepness

and impedance matching.

Signal Analysis methods

Frequency spectrum is limited but applications in mobile, wireless and satellite

communications are becoming ever more diverse. Monitoring and intercepting signals

across wide frequency ranges in different signal scenarios is very challenging.

Comprehensive signal analysis of unknown and complex emissions also demands - great

- effort. With thousands of signals occupying the frequency spectrum, the mission is to

monitor all target signals, detect signals of interest and identify unknowns.

Efficient and advanced signal monitoring solutions enable surveillance of spectrum

segments to detect emissions of interest which are then identified, classified and further

processed (recorded, demodulated, decoded and analyzed).

 Signal surveillance: Observing (targeted monitoring) the occurrence and behavior of

specific signals for situational awareness in specific signal scenarios. Surveillance

systems must be able to measure unknown or “unfriendly” transmissions and extract

information.

 Signal interception: Searching for, detecting, recording and reporting all signals of interest

in a given scenario, often including content extraction with demodulators and decoders.

 Signal analysis: Determining technical signal parameters with automatic or manual

measurements of live or recorded signals. This might also include using demodulators and

decoders to resolve content from unknown signals.

https://en.wikipedia.org/wiki/Constant_k_filter
https://en.wikipedia.org/wiki/M-derived_filter
https://en.wikipedia.org/wiki/Impedance_matching

Lecture 9: Computer Applications and AI-Image Processing 1

Image Processing

Image is an array, or a matrix, of square pixels (picture elements) arranged in columns

and rows

Image processing is the process of transforming an image into a digital form and

performing certain operations to enhance or extract some useful information from it. The

image processing system usually treats all images as 2D signals when applying certain

predetermined signal processing methods.

Image representation

Image representation refers to how visual data is translated into a digital format that

computers can interpret. It involves capturing information about the color, shape, texture,

and other visual characteristics of an image and encoding them in a structured way. The

chosen representation format determines how the image is stored, processed, and

displayed. In Matlab, images are typically represented as matrices. A grayscale image is

a 2D matrix where each element corresponds to the brightness of a pixel, ranging from 0

(black) to 255 (white). Color image are represented as 3D matrices, with the 3rd dimension

corresponding to the RGB (Red, Green, Blue) color channels each having values ranging

from 0 to 255.

Image Formats

Matlab supports varies images formats including JPEG, PNG, BMP, and TIFF. The

imread function is used to import these images into the workspace, while imwrite is used

to save processed images.

Lecture 9: Computer Applications and AI-Image Processing 2

Image Filtering

Filtering is a technique for modifying or enhancing an image. For example, you can filter

an image to emphasize certain features or remove other features. Image processing

operations implemented with filtering include smoothing, sharpening, and edge

enhancement.

The Purpose of smoothing is to reduce noise and improve the visual quality of the

image. A variety of algorithms i.e. [linear] and [nonlinear] algorithms are used for filtering

the images. Image filtering makes possible several useful tasks in image processing. A

filter can be applied to reduce the amount of unwanted noise in a particular image as

shown in fig. Another type of filter can be used to reverse the effects of blurring on a

particular picture. Nonlinear filters have quite different behavior compared to linear

filters. For nonlinear filters, the filter output or response of the filter does not obey the

principles outlined earlier, particularly scaling and shift invariance. Moreover, a nonlinear

filter can produce results that vary in a non-intuitive manner. Defected image Real Image

Fig 1- A Defected image and real image after applying filtering

Image Processing with MATLAB

1. Importing (Image Acquisition) and exporting images.

2. Enhancing images.

3. Detecting edges and shapes.

4. Segmenting objects based on their color and texture.

5. Modifying objects' shape using morphological operations.

6. Measuring shape properties.

7. Performing batch analysis over sets of images

Lecture 9: Computer Applications and AI-Image Processing 3

Image Acquisition

Import and visualize different image types in MATLAB. Manipulate images for

streamlining subsequent analysis steps.

Image enhancement is the process of adjusting digital images so that the results are more

suitable for display or further image analysis. For example, you can remove noise,

sharpen, or brighten an image, making it easier to identify key features.

Edge detection is a fundamental image processing technique for identifying and locating

the boundaries or edges of objects in an image.

Shape detection is an important part of Image Processing referring to modules that deal

with identifying and detecting shapes of parts of image which differ in brightness, color

or texture.

Image Segmentation in Image Processing: divide a digital image into meaningful parts,

like partitioning it into different regions containing pixels with similar characteristics.

This simplifies the image and allows for a more focused

analysis of specific objects or areas of interest.

Morphological operations are a set of techniques used in image processing to analyze and

modify the shape and structure of objects within an image. In

a morphological operation, each pixel in the image is

adjusted based on the value of other pixels in its

neighborhood.

https://www.v7labs.com/blog/image-processing-guide#1-image-acquisition

Lecture 9: Computer Applications and AI-Image Processing 4

Shape measurement refers to the process of quantifying and describing the geometrical

characteristics of objects, particularly their shape

The Image Batch Processor app enables you to process multiple images using the same

function.

Example:

a = imread('cameraman.jpg');

subplot(2,3,1);

imshow(a);

b = rgb2gray(a); % convert RGB image into grayscale

subplot(2,3,2);

imshow(b);

c = im2bw(a); %convert the image into binary

subplot(2,3,3);

imshow(c);

d = imadjust(b); % maps the intensity values in grayscale image b to new values in d

subplot(2,3,4);

imshow(d);

e = a;

e=rgb2gray(e);

subplot(2,3,5);

imhist(e); %the histogram of the image

Lecture 9: Computer Applications and AI-Image Processing 5

Example

A=imread('flowers.png'); %read in image

h=fspecial('motion',10,45); %define motion filter

C=imfilter(A,h,'replicate'); %convolve motion

subplot(2,1,1)

imshow(A) %display original image

subplot(2,1,2)

imshow(C,[]) %display filtered image

Image Transformation

Image transformation refers to the process of changing or distorting an image using

operations such as rotation, scaling, shearing, reflection, or projection

Rotation a process in computer science that involves rotating an image by a specified

angle around a given point. This operation is commonly used in image processing for

tasks such as matching and alignment.

scaling is the process of resizing an image. We deal with the dimensions of an image.

Scaling down deals with making image smaller while Scaling up refers to increase the

size of image.

Shearing is a geometric augmentation that changes a form of an image along a specific

axis to create a different perception angle.

Lecture 9: Computer Applications and AI-Image Processing 6

Reflection transformation in image processing is a geometric operation that involves

flipping an image across a specific axis. The reflection can be done horizontally,

vertically, or diagonally, resulting in a mirrored version of the original image.

Projection: Representing an n-dimensional object into an n-1 dimension is known as

projection. It is process of converting a 3D object into 2D object, we represent a 3D object

on a 2D plane {(x,y,z)->(x,y)}. It is also defined as mapping or transforming of the object

in projection plane or view plane.

Digital Image Processing system

In digital image processing, we will develop a system that whose input would be an image

and output would be an image too. And the system would perform some processing on

the input image and gives its output as a processed image. It is shown below.

Now function applied inside this digital system that process an image and convert it into

output can be called as transformation function.

As it shows transformation or relation, that how an image1 is converted to image2.

Lecture 9: Computer Applications and AI-Image Processing 7

Shift X- and Y-Coordinate Range of Displayed Image

This example shows how to specify a nondefault world coordinate system by changing

the XData and YData properties of a displayed image.

%Read an image.

I = imread('peppers.png');

%Display the image using the intrinsic coordinate system, returning properties of the

image in ax. Turn on the axis to display the coordinate system.

ax = imshow(I);

title('Image Displayed with Intrinsic Coordinates')

axis on

%Check the range of the x- and y-coordinates, which are stored

in the XData and YData properties of ax. The ranges match the dimensions of the image.

xrange = ax.XData

yrange = ax.YData

%Change the range of the x- and y-coordinates. This example shifts the image to the right

by adding 100 to the x-coordinates and shifts the image up by subtracting 25 from the y-

coordinates.

xrangeNew = xrange + 100;

yrangeNew = yrange - 25;

%Display the image, specifying the shifted spatial coordinates.

figure

axNew = imshow(I, 'XData',xrangeNew, 'YData',yrangeNew);

title('Image Displayed with Nondefault Coordinates');

axis on

Lecture 9: Computer Applications and AI-Image Processing 8

Rotation Example

%% Step 1: Read Image

% Bring an image into the workspace.

original = imread('cameraman.tif');

imshow(original);

text(size(original,2),size(original,1)+15, ...

 'Image courtesy of Massachusetts Institute of Technology', ...

 'FontSize',7,'HorizontalAlignment','right');

%% Step 2: Resize and Rotate the Image

scale = 0.7;

J = imresize(original, scale); % Try varying the scale factor.

theta = 30;

distorted = imrotate(J,theta); % Try varying the angle, theta.

figure; imshow(distorted)

