Textbooks:

- 1. Digital Design, Morris M. Mano, (3rd Edition), Prentice Hall, 2002
- 2. Digital Fundamentals, Thomas L. Floyd, (9th Edition), Prentice Hall, 2006
- 3. Microprocessor Architecture, Programming, and Applications with the 8085, by

R. Gaonkar.

Overview

- The design of computers
 It all starts with numbers
 Building circuits
 Building computing machines
- Digital systems
- Understanding decimal numbers
- Binary and octal numbersThe basis of computers!
- Conversion between different number systems

Digital Systems

• Digital systems consider *discrete* amounts of data. Examples

- •26 letters in the alphabet
- •10 decimal digits
- Larger quantities can be built from discrete values:
 - •Words made of letters
 - •Numbers made of decimal digits (e.g. 239875.32)
- Computers operate on *binary* values (0 and 1)
- Easy to represent binary values electrically
 - •Voltages and currents.
 - •Can be implemented using circuits
 - •Create the building blocks of modern computers

Understanding Decimal Numbers

Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)
But how many items does a decimal number represent?
8653 = 8*10³+ 6*10² + 5*10¹ + 3*10⁰

•What about fractions?

 $97654.35 = 9*10^4 + 7*10^3 + 6*10^2 + 5*10^1 + 4*10^0 + 3*10^{-1} + 5*10^{-2}$ •In formal notation -> $(97654.35)_{10}$

Understanding Binary Numbers

Binary numbers are made of binary digits (bits): 0 and 1
How many items does a binary number represent? (1011)2= 1*2³+0*2² + 1*2¹ + 1*2⁰ = (11)₁₀
What about fractions? (110.10)2= 1*2² + 1*2¹ + 0*2⁰+ 1*2⁻¹ + 0*2⁻²
Groups of eight bits are called a *byte* (11001001)₂
Groups of four bits are called a *nibble*. (1101)₂

Why Use Binary Numbers?

Conversion Between Number Bases

- Learn to convert between bases.
- Already demonstrated how to convert from binary to decimal.

Convert an Integer from Decimal to another Base

For each digit position:

- 1. Divide decimal number by the base (e.g. 2)
- 2. The remainder is the lowest-order digit3.Repeat first two steps until no divisor remains.

Example for (13)_{10:}

	Integer Quotien	t	Remainder	Coefficient
13/2 =	6	+	1/2	a ₀ = 1
6/2 =	3	+	0	a ₁ = 0
3/2 =	1	+	1/2	$a_2 = 1$
1/2 =	0	+	1/2	a ₃ =1

Answer $(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$

Convert an Fraction from Decimal to another Base1.

- 1. Multiply decimal number by the base (e.g. 2)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.

Example for (0.625)_{10:}

	Integer	I	Fraction	1	Coefficient
0.625 x 0.250 x	2 = 2 =	1 0	+ +	0.25 0.50	a ₋₁ = 1 a ₋₂ = 0
0.500 x	2 =	1	+	0	a _{_3} = 1

Answer
$$(0.625)_{10} = (0.a_{-1}a_{-2}a_{-3})_2 = (0.101)_2$$

The Growth of Binary Numbers

		-			-
n	2 ⁿ		n	2 ⁿ	
0	2º=1		8	2 ⁸ =256	
1	2 ¹ =2		9	2º=512	
2	2 ² =4		10	210=1024	
3	2 ³ =8		11	211=2048	
4	24=16		12	2 ¹² =4096	
5	25=32		20	2 ²⁰ =1M	Mega
6	2 ⁶ =64		30	2 ³⁰ =1G	Giga
7	2 ⁷ =128	1	40	2 ⁴⁰ =1T	Tera

Binary Addition

- Binary addition is very simple.
- This is best shown in an example of adding two binary numbers...

	1	1	1	1	1	1•		carries
		1	1	1	1	0	1	
+			1	0	1	1	1	
	1	0	1	0	1	0	0	

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- Let's subtract (10111)₂ from (1001101)₂...

Binary Multiplication

Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler... $1 \quad 0 \quad 1 \quad 1 \quad 1$

Х			1	0 1	1 0	1 1	1 0
1	0 0	1 0 1	0 0 0 1	0 1 0 1	0 1 0	0 1	0
1	1	1	0	0	1	1	0

Understanding Octal Numbers

- Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7)
- How many items does an octal number represent?
 (4536)₈ = 4x8³ + 5x8² + 3x8¹ + 6x8⁰ = (1362)₁₀
- What about fractions?
 (465.27)₈ = 4x8²⁺ 6x8¹⁺ 5x8⁰ + 2x8⁻¹⁺ 7x8⁻²
- ° Octal numbers don't use digits 8 or 9

Convert an Integer from Decimal to Octal

- 1. Divide decimal number by the base (8)
- 2. The *remainder* is the lowest-order digit
- 3. Repeat first two steps until no *divisor* remains.

Example for (175)_{10:}

		Intege Quotie	r ent	Remainder	Coefficient
175/8	=	21	+	7/8	a ₀ = 7
21/8	=	2	+	5/8	a₁ = 5
2/8	=	0	+	2/8	a ₂ = 2
					-

Answer $(175)_{10} = (a_2 a_1 a_0)_2 = (257)_8$

Convert an Fraction from Decimal to Octal

- 1. Multiply decimal number by the base (e.g. 8)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.

Example for (0.3125)_{10:}

Inte	ger F	ractio	n	Coefficient
0.3125 x 8 =	= 2	+	5	a ₋₁ = 2
0.5000 x 8 =	= 4	+	0	a ₋₂ = 4

Answer $(0.3125)_{10} = (0.24)_8$

Understanding Hexadecimal Numbers

- Hexadecimal numbers are made of <u>16</u> digits:
 (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F)
- ^o How many items does an hex number represent?
 - $(3A9F)_{16} = 3x16^3 + 10x16^2 + 9x16^1 + 15x16^0 = 14999_{10}$
- ° What about fractions?
 - (2D3.5)₁₆ = 2x16² + 13x16¹ + 3x16⁰ + 5x16⁻¹ = 723.3125₁₀
- Note that each hexadecimal digit can be represented with four bits.
 - (1110) 2 = (E)16
- [°] Groups of four bits are called a *nibble*.
 - (1110) ₂

Putting It All Together

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	б	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	в
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

- Binary, octal, and hexadecimal similar
- Easy to build circuits to operate on these representations
- Possible to convert between the three formats

Converting Between Base 16 and Base 2

 $3A9F_{16} = 0011 1010 1001 1111_2$ 3 A 9 F

°Conversion is easy!

• Determine 4-bit value for each hex digit

°Note that there are 24= 16 different values of four bits

°Easier to read and write in hexadecimal.

°Representations are equivalent!

Converting Between Base 16 and Base 8

3A9F ₁₆ =	<u>0011</u>	<u>1010</u>	<u>) 100</u>	<u>)1 1</u>	111 ₂
	3	А	9		F
			Ļ		
35237 ₈ =	<u>011</u>	1 <u>01</u>	<u>010</u>	<u>011</u>	<u>111</u> ₂
	3	5	2	3	7

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.